
Categorizing
Neutrino Interactions
using Convolutional

Neural Networks

Adam Aurisano
University of Cincinnati

S2I2 HEP/CS Workshop
University of Illinois at Urbana-Champaign

8 December 2016

8 December 2016 Adam Aurisano 2

Can You Find the Neutrino?

● At NOvA, data is taken
in 550 s intervals.

● Most of the activity is
from cosmic rays
– 100,000's cosmic

rays/second

– 100's /year

– 10's e/year

8 December 2016 Adam Aurisano 3

Zooming in.

● Clustering in space and
time with DBSCAN
creates slices
– Groups of hits likely to

be causally related
– Lets us separate neutrino

events, cosmic rays, and
noise

– .But it still doesn't tell
use what each slice
actually is – for that we
need a classifier.

3 May 2016 Adam Aurisano 4

Event Topologies

● For the flagship analysis,
the primary task is
separating e events from
neutral current events.

● NOvA events already look
like images
– PVC cells = pixels

– Charge deposited = color

● Try using computer
vision techniques to
classify events.

More complicated events can contain
multiple charged pions make it more
difficult to separate these event types.

3 May 2016 Adam Aurisano 5

Convolutional Neural Networks

● Deep learning is a new paradigm that has caused a
renaissance in the machine learning community.
– Made possible by better activation functions, better

weight initialization, and the advent of cheap GPUs.

● One variant – the convolutional neural network has
been highly successful at image recognition tasks.

● Two basic type of layers:
– Convolutional layers – apply discrete convolutions using

learned kernels to extract features from the image.

– Pooling layers – downsample the image and increase
translational invariance in the final output.

● Stacked structure of convolutional and pooling
layers extract increasingly abstract features from the
input raw data encoding both local and global
structure.

● Relatively new:
– LeNet – one of the first (1998)

– AlexNet – the one that started the revolution (2012)

8 December 2016 Adam Aurisano 6

GoogLeNet

C. Szegedy, et. al., Going Deeper with
Convolutions, arXiv:1409.4842 (2014)

● Due to the rise of relatively cheap GPUs, it has become possible to make increasingly
complex network-in-network models.

● The GoogLeNet architecture is composed of a series of inception modules.
– Outputs of the previous layer fans out to several convolutional layers with different kernel size.

– Applies max pooling to downsample in feature map height and width and 1x1 convolutions to
downsample the previous stack of feature maps into a smaller set of feature maps.

● Designed to get maximum identification power out of as few operations as possible.

● In the ILSVRC 2014 image classification task, the correct classification was not one
of the top 5 ranked categories out of 1,000 only 6.67% of the time.

8 December 2016 Adam Aurisano 7

GoogLeNet

● Due to the rise of relatively cheap GPUs, it has become possible to make increasingly
complex network-in-network models.

● The GoogLeNet architecture is composed of a series of inception modules.
– Outputs of the previous layer fans out to several convolutional layers with different kernel size.

– Applies max pooling to downsample in feature map height and width and 1x1 convolutions to
downsample the previous stack of feature maps into a smaller set of feature maps.

● Designed to get maximum identification power out of as few operations as possible.

● In the ILSVRC 2014 image classification task, the correct classification was not one
of the top 5 ranked categories out of 1,000 only 6.67% of the time.

C. Szegedy, et. al., Going Deeper with
Convolutions, arXiv:1409.4842 (2014)

8 December 2016 Adam Aurisano 8

Our Architecture

● GoogLeNet showed the most promise in our early testing.
● Detector is composed of alternating horizontal and vertical planes.

– Two views of the event- one from top and one from side

● Instead, create a “siamese” GoogLeNet variant.
– Split the views early and double the architecture. Each parallel GoogLeNet

learns separate features. These are merged together at the end before going
through fully connected layers.

– 1024 features are used in the final layer for classification.

● The architecture is a multi-classifier → attempts to categorize events as
{, e, } x {QE,RES,DIS} or cosmic rays.

– QE (quasi-elastic): Incoming neutrino interacts with a single nucleon. Results in
an out-going lepton + a recoil nucleon

– RES (resonance): Interaction of the neutrino excites a  resonance, often
leading to a pion in the final state (in addition to the lepton and nucleon).

– DIS (deep inelastic scattering): The interaction causes fragmentation of the
nucleus.

– These are approximately in order of increasing complexity, though final state
interactions make this more complicated.

● In principle, this architecture a universal classifier (rather than e only).

8 December 2016 Adam Aurisano 9

Caffe
● Caffe (caffe.berkeleyvision.org) is an open

source deep learning framework developed
by the Berkeley Vision and Learning Center.

● Comes pre-packaged with a large variety of
layer types.

● Comes with a variety of models produced by
different computer vision groups for image
classification contests.

● Able to run on GPUs without any extra effort
(only change one line in the configuration
file)

● C++ API made it easy to integrate with
NOvA's art framework.
– Training on GPUs.

– Production-time evaluation on the grid on CPUs.

Y. Jia et. al., Caffe: Convolutional
Architecture for Fast Feature
Embedding, arXiv:1408.5093 (2014)

Trained on 2 k40 GPUs on Fermilab's
Wilson cluster for ~1 week.

8 December 2016 Adam Aurisano 10

Performance as a e Selector

● Sum over all e interaction types to create a e
selector.

● Evaluate on a statistically independent realistic
MC sample.

● Weight by the simulated NOvA flux and
neutrino oscillation probabilities using global
best fits of oscillation parameters.

● Optimize selection for discovery using FOM
S/sqrt(B)

● Using this optimization, CVN achieves an FOM
increase relative to previous selectors
equivalent to collecting 30% more data.

● Primarily due to improved efficiency in
selecting resonance and deep inelastic
scattering interactions.

8 December 2016 Adam Aurisano 11

Understanding the Network: Intermediate
Features

● Example simulated 

● Feature maps after the first inception
module

● Highlighted maps seem to pick out:
● Muon-like tracks
● Hadronic activity
● EM showers

8 December 2016 Adam Aurisano 12

Understanding the Network: Intermediate
Features

● Example simulated e

● Feature maps after the first inception
module

● Highlighted maps seem to pick out:
● Muon-like tracks
● Hadronic activity
● EM showers

8 December 2016 Adam Aurisano 13

Understanding the Network:
Feature Embedding with t-SNE

8 December 2016 Adam Aurisano 14

Had
ro

nic
Acti

vit
y

Track vs. Shower

Understanding the Network:
Feature Embedding with t-SNE

8 December 2016 Adam Aurisano 15

Generalizing the Features?

● From the t-SNE embedding, it's clear that the final 1024
features encode fairly general information about the
neutrino interaction.

● Can these features be reused for other tasks?
– The full network is somewhat slow – evaluating once upstream

and reusing the features in shallow methods could provide
time savings.

– Essentially transfer learning.

– Currently in testing in NOvA for cross-section analyses that
want to select final states not in the original list of categories.

8 December 2016 Adam Aurisano 16

The Future?

8 December 2016 Adam Aurisano 17

Semantic Segmentation

● Semantic segmentation refers to the process
of labeling pixels according to what object
they are a part of.

● Cutting edge research has demonstrated that
this is possible using convolutional neural
networks.
– Extract information from all pixels across all

layers corresponding to the pixel of interest (a
hyper column of pixels)

● This could potentially turn reconstruction on
its head
– Instead of reconstructing objects and then

identifying them, label all pixels according to
what they likely came from first, and then use
that information to assist reconstruction.

– Instead of clustering in time and space, cluster in
time, space, and PID.

– Could potentially make it easier to reconstruct
neutron interactions that are not well connected
to the event vertex.

arXiv:1411:4038

8 December 2016 Adam Aurisano 18

Conclusions

● Modern deep learning techniques are very powerful.
● Using a modified GoogLeNet architecture, it is possible to build

and train a neutrino event classifier that can achieve excellent
signal and background separation for the e appearance analysis.

– Uses minimal reconstruction

– Equivalent to a 30% increase in statistics.

● GPU acceleration makes it possible to train complex networks in
~1 week.

● This technique is directly applicable to a number of analyses
using other flavors or interaction types.

● We've only scratched the surface of what might be possible with
deep learning.

8 December 2016 Adam Aurisano 19

Backup

8 December 2016 Adam Aurisano 20

Muon removed, electron
added

8 December 2016 Adam Aurisano 21

Muon removed cosmic brem:
EM shower response

8 December 2016 Adam Aurisano 22

Traditional Neural Networks

● Traditional neural nets are
powerful machine learning
tools in widespread use
through HEP.

● Nodes organized in layer.
● Each node performs a

weighted sum on the output
of all nodes in the previous
layer, and the result is pushed
through a non-linear function.

● Optimize the weights using an
iterative learning procedure.

8 December 2016 Adam Aurisano 23

Simplified Example

x

1

y

2

y1

x

3

x

2

w11

w12

w32

w31

w22

w21

y1 = (w11*x1 + w21*x2 + w31*x3 + b1)

y2 = (w12*x1 + w22*x2 + w32*x3 + b2)

where wij are tunable weights and bi
are tunable biases.



8 December 2016 Adam Aurisano 24

Loss Function

● To optimize the weights, we first need an objective function.
– Usually called the loss.

● Many options for the definition of the loss, depending on the problem.
– Cross-entropy loss, shown here, is useful for classification problems.

8 December 2016 Adam Aurisano 25

Training

● Minimize the loss function using
gradient descent.
– Calculate the loss for a batch of

labeled examples.

– Use back propagation to calculate
the gradient.

● Effectively just the chain rule.

– Update the weights according to:

learning rate gradient

8 December 2016 Adam Aurisano 26

Why Isn't this Good Enough?

● In theory, a single layer network with a sufficient
number of node can approximate most functions to
arbitrary precision.

● Multi-layer networks can often approximate a function
with fewer nodes than a single layer network.
– These networks become very difficult to train.

– Difficulty training deep networks led to neural nets falling
out of favor.

● Due to the fully connected nature of traditional neural
nets, the number of free parameters increases sharply
with additional nodes.

8 December 2016 Adam Aurisano 27

What Made Deep Networks Possible?

● Biggest problem with deep networks is the difficulty in training them.
● Several improvements made this possible:

– Better initialization of weights

– Better non-linearities
● Sigmoids lead to the vanishing gradient problem making training slow
● ReLU allow the gradient to propagate back without vanishing

– Advent of cheap GPUs

8 December 2016 Adam Aurisano 28

Convolutional Neural Networks

http://deeplearning.net/tutorial/
lenet.html

● Convolutional neural nets are a very
successful deep learning method.

● Inspired by research showing that
the cells in the visual cortex are
only responsive to small portions of
the visual field - “receptive field”.

● Some cells collect information from
small patches – sensitive to edge-
like features.

● Other cells collect information from
large patches.

● Effectively, these cells are applying
convolutional kernels across the
visual field.

8 December 2016 Adam Aurisano 29

Convolutional Kernels

● Convolutional kernels are well known in computer graphics.
● Kernels transform images.

– The one above outlines objects in the image.

● Many common kernels exist, but it we want to learn optimal
kernels directly from the data.

http://setosa.io/ev/image-
kernels/

8 December 2016 Adam Aurisano 30

Convolutional Layers

● Each kernel we create stays the same as we
apply it across the image.
– Weight sharing reduces the number of free

parameters, lowering the risk of overtraining.

● Each convolutional layer trains an array of
kernels which produce corresponding feature
maps.

● Weights going from layer to the next are a 4D
tensor of NxMxHxW
– N is number of incoming feature maps

– M is the number of outgoing feature maps

– H and W are the height and width of the outgoing
convolutional kernels.

● The next layer applies kernels to combine the
information in a receptive field across feature
maps in the previous layer to create new
feature maps.

http://deeplearning.net/tutorial/lenet.html

Each pixel is the result of a
tensor dot product of the
weights with a tower of patches
in the incoming feature maps

8 December 2016 Adam Aurisano 31

Pooling Layers

● Pooling is a technique to down
sample information.
– Output pixel is either maximum value

of a patch of input pixels (max
pooling) or the average (average
pooling).

● Can be thought of as a type of
smoothing to remove less significant
information.

● Can either be strided or unstrided
– Controls how much information is lost

● Number of output feature maps is
the same as the number of input
maps.

8 December 2016 Adam Aurisano 32

Feature Extraction

● Convolutional layers learn about local structure
in the image.

● Layers deeper in the network combine features
extracted from many small patches.

● Each layer extracts increasingly complex features
from the input image.

Raw input Low level features Mid level features High level features

8 December 2016 Adam Aurisano 33

LeNet-5 Model

● CNNs have existed for a while now, but they've only recently become easy
to use.

● One early example was the LeNet architecture.
● Composed of alternating convolutional and max pooling layers that ends in

a fully connected MLP.
● Max pooling partitions the feature map into non-overlapping rectangles

and downsamples by only keeping the maximum value contained in each.
● Max pooling + convolutional layers add a degree of translational invariance

to the net. Y. LeCun, L. Bottou, P. Haffner,
Proceedings on the IEEE, 86(11), 2278-
2324, (1998d)

8 December 2016 Adam Aurisano 34

What is Overtraining?

● Sometimes called a failure to generalize
– Networks contain large numbers of parameters – sometimes they learn how to classify

the training data exactly at the expense of generalizing well to new data.
– Can be seen if the evaluation of testing data begins to diverge from that of training data.

● Convolutional neural networks tend to already be more robust due to having
fewer trainable parameters compared to fully connected networks.

● In our case, our training data is entire synthetic
– Must also make sure we generalize from simulation to data.

● Techniques use to prevent overtraining
– Early stopping

● Hard to make rigorous – will not use with CVN.

– Regularization
– Dropout

– Data Augmentation

8 December 2016 Adam Aurisano 35

Regularization

● Add a term to the loss of the form:
● Decreases the number of effective

free parameters.
● Prevents any weight from being

too large unless there is strong
evidence that it needs to be.
– Makes it difficult for the network to

finely tune weights to perfectly
categorize training examples.

Moody, J., et al. "A simple weight decay can improve generalization."
Advances in neural information processing systems 4 (1995): 950-957.

8 December 2016 Adam Aurisano 36

Dropout

● In the fully connected layer in CVN, we apply the dropout technique.
– At each iteration, randomly set 40% of weights to zero and scale the rest up

by 1/(1 – 0.4).

– Since no weight is reliably in use with any other weight, weights can not be
strongly correlated.

– Preventing weight co-adaptation strongly promotes generalization.

– Can be thought of as an ensemble of smaller networks.

Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014

8 December 2016 Adam Aurisano 37

Constructing Input Images

X View

Y View

● For our input, we construct “pixel maps” from
hits in a slice.
– No reconstruction other than initial hit clustering.

– All slices with at least 15 distinct hits were used in
training.

● The X view is composed of all planes with
vertical cells
– A projection on the x,z plane

● The Y view is composed of all planes with
horizontal cells.
– A projection on the y,z plane

● We take all hits in a 100 plane by 80 cell box
for each view
– ~14.52 m deep and ~4.18 m wide

8 December 2016 Adam Aurisano 38

Building Training and Testing Datasets

● Take existing simulations containing , e,
and  events.

● Construct a pixel array pixels[c][h][w]
where c indexes the view, h indexes cells,
and w indexes planes from pixel maps.

● Push into LevelDB databases: 80% for
training and 20% for testing.

● Rescale the corrected hit energy to go from
0 – 255 and recast to 8 bits to save space.

● Almost all hits have exactly zero energy
(suppressed in these plots).

● Distribution very different from natural
images.

8 December 2016 Adam Aurisano 39

Recurrent Neural Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● Neural networks with loops in them are called
recurrent.

● Can be proven to be Turing complete
– Can simulate arbitrary programs.

● These architectures have a concept of time since
information propagates around these loops once
per time step.

● Ideal for problems with indeterminate input or
output length.

● Has been used to scan over complicated images
to decrease the computational complexity of
each given subsample.

● Could be used to incorporate temporal
information to distinguish up and downward
going muon tracks (to look for atmospheric
neutrinos) or to incorporate information from
late interactions like neutrons and Michel
electrons.

● Possibly also useful for online triggering.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

