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Can You Find the Neutrino?

● At NOvA, data is taken 
in 550 s intervals.

● Most of the activity is 
from cosmic rays
– 100,000's cosmic 

rays/second

– 100's /year

– 10's e/year
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Zooming in.

● Clustering in space and 
time with DBSCAN 
creates slices
– Groups of hits likely to 

be causally related
– Lets us separate neutrino 

events, cosmic rays, and 
noise

– .But it still doesn't tell 
use what each slice 
actually is – for that we 
need a classifier.
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Event Topologies

● For the flagship analysis, 
the primary task is 
separating e events from 
neutral current events.

● NOvA events already look 
like images
– PVC cells = pixels

– Charge deposited = color

● Try using computer 
vision techniques to 
classify events.

More complicated events can contain 
multiple charged pions make it more 
difficult to separate these event types.
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Convolutional Neural Networks

● Deep learning is a new paradigm that has caused a 
renaissance in the machine learning community.
– Made possible by better activation functions, better 

weight initialization, and the advent of cheap GPUs.

● One variant – the convolutional neural network has 
been highly successful at image recognition tasks.

● Two basic type of layers:
– Convolutional layers – apply discrete convolutions using 

learned kernels to extract features from the image.

– Pooling layers – downsample the image and increase 
translational invariance in the final output.

● Stacked structure of convolutional and pooling 
layers extract increasingly abstract features from the 
input raw data encoding both local and global 
structure.

● Relatively new:
– LeNet – one of the first (1998)

– AlexNet – the one that started the revolution (2012)
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GoogLeNet

C. Szegedy, et. al., Going Deeper with
Convolutions, arXiv:1409.4842 (2014)

● Due to the rise of relatively cheap GPUs, it has become possible to make increasingly 
complex network-in-network models.

●  The GoogLeNet architecture is composed of a series of inception modules.
– Outputs of the previous layer fans out to several convolutional layers with different kernel size.

– Applies max pooling to downsample in feature map height and width and 1x1 convolutions to 
downsample the previous stack of feature maps into a smaller set of feature maps.  

● Designed to get maximum identification power out of as few operations as possible.

● In the ILSVRC 2014 image classification task, the correct classification was not one 
of the top 5 ranked categories out of 1,000 only 6.67% of the time.
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Our Architecture

● GoogLeNet showed the most promise in our early testing.
● Detector is composed of alternating horizontal and vertical planes.

– Two views of the event-  one from top and one from side

● Instead, create a “siamese” GoogLeNet variant.
– Split the views early and double the architecture.  Each parallel GoogLeNet 

learns separate features.  These are merged together at the end before going 
through fully connected layers.

– 1024 features are used in the final layer for classification.

● The architecture is a multi-classifier → attempts to categorize events as 
{, e, } x {QE,RES,DIS} or cosmic rays.

– QE (quasi-elastic): Incoming neutrino interacts with a single nucleon. Results in 
an out-going lepton + a recoil nucleon

– RES (resonance): Interaction of the neutrino excites a  resonance, often 
leading to a pion in the final state (in addition to the lepton and nucleon).

– DIS (deep inelastic scattering): The interaction causes fragmentation of the 
nucleus.

– These are approximately in order of increasing complexity, though final state 
interactions make this more complicated.

● In principle, this architecture a universal classifier (rather than e only).
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Caffe
● Caffe (caffe.berkeleyvision.org) is an open 

source deep learning framework developed 
by the Berkeley Vision and Learning Center.

● Comes pre-packaged with a large variety of 
layer types.

● Comes with a variety of models produced by 
different computer vision groups for image 
classification contests.

● Able to run on GPUs without any extra effort 
(only change one line in the configuration 
file)

● C++ API made it easy to integrate with 
NOvA's art framework.
– Training on GPUs.

– Production-time evaluation on the grid on CPUs.

Y. Jia et. al., Caffe: Convolutional
Architecture for Fast Feature
Embedding, arXiv:1408.5093 (2014)

Trained on 2 k40 GPUs on Fermilab's 
Wilson cluster for ~1 week.
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Performance as a e Selector

● Sum over all e interaction types to create a e 
selector.

● Evaluate on a statistically independent realistic 
MC sample.

● Weight by the simulated NOvA flux and 
neutrino oscillation probabilities using global 
best fits of oscillation parameters.

● Optimize selection for discovery using FOM 
S/sqrt(B)

● Using this optimization, CVN achieves an FOM 
increase relative to previous selectors 
equivalent to collecting 30% more data.

● Primarily due to improved efficiency in 
selecting resonance and deep inelastic 
scattering interactions.
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Understanding the Network: Intermediate 
Features

● Example simulated  

● Feature maps after the first inception 
module

● Highlighted maps seem to pick out:
● Muon-like tracks
● Hadronic activity
● EM showers
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Understanding the Network: 
Feature Embedding with t-SNE
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Understanding the Network: 
Feature Embedding with t-SNE
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Generalizing the Features?

● From the t-SNE embedding, it's clear that the final 1024 
features encode fairly general information about the 
neutrino interaction.

● Can these features be reused for other tasks?
– The full network is somewhat slow – evaluating once upstream 

and reusing the features in shallow methods could provide 
time savings.

– Essentially transfer learning.

– Currently in testing in NOvA for cross-section analyses that 
want to select final states not in the original list of categories.
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The Future?
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Semantic Segmentation

● Semantic segmentation refers to the process 
of labeling pixels according to what object 
they are a part of.

● Cutting edge research has demonstrated that 
this is possible using convolutional neural 
networks.
– Extract information from all pixels across all 

layers corresponding to the pixel of interest (a 
hyper column of pixels)

● This could potentially turn reconstruction on 
its head
– Instead of reconstructing objects and then 

identifying them, label all pixels according to 
what they likely came from first, and then use 
that information to assist reconstruction.

– Instead of clustering in time and space, cluster in 
time, space, and PID.

– Could potentially make it easier to reconstruct 
neutron interactions that are not well connected 
to the event vertex. 

arXiv:1411:4038
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Conclusions

● Modern deep learning techniques are very powerful.
● Using a modified GoogLeNet architecture, it is possible to build 

and train a neutrino event classifier that can achieve excellent 
signal and background separation for the e appearance analysis.

– Uses minimal reconstruction

– Equivalent to a 30% increase in statistics.

● GPU acceleration makes it possible to train complex networks in 
~1 week.

● This technique is directly applicable to a number of analyses 
using other flavors or interaction types.

● We've only scratched the surface of what might be possible with 
deep learning.
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Backup
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Muon removed, electron 
added
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Muon removed cosmic brem: 
EM shower response
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Traditional Neural Networks

● Traditional neural nets are 
powerful machine learning 
tools in widespread use 
through HEP.

● Nodes organized in layer.
● Each node performs a 

weighted sum on the output 
of all nodes in the previous 
layer, and the result is pushed 
through a non-linear function.

● Optimize the weights using an 
iterative learning procedure.
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Simplified Example
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where wij are tunable weights and bi 
are tunable biases.
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Loss Function

● To optimize the weights, we first need an objective function.
– Usually called the loss.

● Many options for the definition of the loss, depending on the problem.  
– Cross-entropy loss, shown here, is useful for classification problems.
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Training

● Minimize the loss function using 
gradient descent.
– Calculate the loss for a batch of 

labeled examples.

– Use back propagation to calculate 
the gradient.

● Effectively just the chain rule.

– Update the weights according to:

learning rate gradient
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Why Isn't this Good Enough?

● In theory, a single layer network with a sufficient 
number of node can approximate most functions to 
arbitrary precision.

● Multi-layer networks can often approximate a function 
with fewer nodes than a single layer network.
– These networks become very difficult to train.

– Difficulty training deep networks led to neural nets falling 
out of favor.

● Due to the fully connected nature of traditional neural 
nets, the number of free parameters increases sharply 
with additional nodes.
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What Made Deep Networks Possible?

● Biggest problem with deep networks is the difficulty in training them.
● Several improvements made this possible:

– Better initialization of weights

– Better non-linearities
● Sigmoids lead to the vanishing gradient problem making training slow
● ReLU allow the gradient to propagate back without vanishing

– Advent of cheap GPUs
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Convolutional Neural Networks

http://deeplearning.net/tutorial/
lenet.html

● Convolutional neural nets are a very 
successful deep learning method.

● Inspired by research showing that 
the cells in the visual cortex are 
only responsive to small portions of 
the visual field - “receptive field”.

● Some cells collect information from 
small patches – sensitive to edge-
like features.

● Other cells collect information from 
large patches.

● Effectively, these cells are applying 
convolutional kernels across the 
visual field.
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Convolutional Kernels

● Convolutional kernels are well known in computer graphics.
● Kernels transform images.

– The one above outlines objects in the image.

● Many common kernels exist, but it we want to learn optimal 
kernels directly from the data.  

http://setosa.io/ev/image-
kernels/
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Convolutional Layers

● Each kernel we create stays the same as we 
apply it across the image.
– Weight sharing reduces the number of free 

parameters, lowering the risk of overtraining.

● Each convolutional layer trains an array of 
kernels which produce corresponding feature 
maps.

● Weights going from layer to the next are a 4D 
tensor of NxMxHxW
– N is number of incoming feature maps

– M is the number of outgoing feature maps

– H and W are the height and width of the outgoing 
convolutional kernels.

● The next layer applies kernels to combine the 
information in a receptive field across feature 
maps in the previous layer to create new 
feature maps.  

http://deeplearning.net/tutorial/lenet.html

Each pixel is the result of a 
tensor dot product of the 
weights with a tower of patches 
in the incoming feature maps
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Pooling Layers

● Pooling is a technique to down 
sample information.
– Output pixel is either maximum value 

of a patch of input pixels (max 
pooling) or the average (average 
pooling).

● Can be thought of as a type of 
smoothing to remove less significant 
information.

● Can either be strided or unstrided
– Controls how much information is lost

● Number of output feature maps is 
the same as the number of input 
maps.
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Feature Extraction

● Convolutional layers learn about local structure 
in the image.

● Layers deeper in the network combine features 
extracted from many small patches.

● Each layer extracts increasingly complex features 
from the input image. 

Raw input Low level features Mid level features High level features
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LeNet-5 Model

● CNNs have existed for a while now, but they've only recently become easy 
to use.

● One early example was the LeNet architecture.
● Composed of alternating convolutional and max pooling layers that ends in 

a fully connected MLP.
● Max pooling partitions the feature map into non-overlapping rectangles 

and downsamples by only keeping the maximum value contained in each.
● Max pooling + convolutional layers add a degree of translational invariance 

to the net. Y. LeCun, L. Bottou, P. Haffner, 
Proceedings on the IEEE, 86(11), 2278-
2324, (1998d) 
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What is Overtraining?

● Sometimes called a failure to generalize
– Networks contain large numbers of parameters – sometimes they learn how to classify 

the training data exactly at the expense of generalizing well to new data.
– Can be seen if the evaluation of testing data begins to diverge from that of training data.

● Convolutional neural networks tend to already be more robust due to having 
fewer trainable parameters compared to fully connected networks.

● In our case, our training data is entire synthetic
– Must also make sure we generalize from simulation to data.

● Techniques use to prevent overtraining
– Early stopping

● Hard to make rigorous – will not use with CVN.

– Regularization
– Dropout

– Data Augmentation
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Regularization

● Add a term to the loss of the form:
● Decreases the number of effective 

free parameters.
● Prevents any weight from being 

too large unless there is strong 
evidence that it needs to be.
– Makes it difficult for the network to 

finely tune weights to perfectly 
categorize training examples.

Moody, J., et al. "A simple weight decay can improve generalization."
Advances in neural information processing systems 4 (1995): 950-957.



8 December 2016 Adam Aurisano 36

Dropout 

● In the fully connected layer in CVN, we apply the dropout technique.
– At each iteration, randomly set 40% of weights to zero and scale the rest up 

by 1/(1 – 0.4).

– Since no weight is reliably in use with any other weight, weights can not be 
strongly correlated.

– Preventing weight co-adaptation strongly promotes generalization.

– Can be thought of as an ensemble of smaller networks.

Srivasta et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014
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Constructing Input Images

X View

Y View

● For our input, we construct “pixel maps” from 
hits in a slice.
– No reconstruction other than initial hit clustering.

– All slices with at least 15 distinct hits were used in 
training.

● The X view is composed of all planes with 
vertical cells 
– A projection on the x,z plane

● The Y view is composed of all planes with 
horizontal cells.
– A projection on the y,z plane

● We take all hits in a 100 plane by 80 cell box 
for each view
– ~14.52 m deep and ~4.18 m wide
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Building Training and Testing Datasets

● Take existing simulations containing , e, 
and  events.

● Construct a pixel array pixels[c][h][w] 
where c indexes the view, h indexes cells, 
and w indexes planes from pixel maps.

● Push into LevelDB databases: 80% for 
training and 20% for testing.

● Rescale the corrected hit energy to go from 
0 – 255 and recast to 8 bits to save space.

● Almost all hits have exactly zero energy 
(suppressed in these plots).

● Distribution very different from natural 
images.
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Recurrent Neural Networks

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● Neural networks with loops in them are called 
recurrent.

● Can be proven to be Turing complete
– Can simulate arbitrary programs.

● These architectures have a concept of time since 
information propagates around these loops once 
per time step.

● Ideal for problems with indeterminate input or 
output length.

● Has been used to scan over complicated images 
to decrease the computational complexity of 
each given subsample.

● Could be used to incorporate temporal 
information to distinguish up and downward 
going muon tracks (to look for atmospheric 
neutrinos) or to incorporate information from 
late interactions like neutrons and Michel 
electrons.

● Possibly also useful for online triggering.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

