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Today Near future
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Dark Energy
Acceleratod Expansion Atoms 4.9%

Alterglow Light
Pattern  Dark Ages Dovelopment of
Galaxes, Planets, eic.

Dark energy
68.3%

\&locity

Shout 400 milon yrs, R Unknown Physics- - A

Blg Bang Expansion

13,7 billicn years
{0

Distance

Data size:
— LHC 15,000,000 Tb 2010 - 2035
— Resources not up as fast as data volumes
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UF  Machine Learning 2%
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General Approach:

» Given training data T = {Yy, X} = (y,X),
(y,X)n, function space {f } and a
constraint on these functions, teach a
machine to learn the

mapping y = f(x)
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UF In Computer Science
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Machine learning already preferred
approach to

« Speech recognition, Natural language processmg
« Computer vision, Robot control
« Medical outcomes analysis

Machine Learning field is growing fast
* Improved algorithms
* Increased data capture

12/8/2016 S212 HEP-CS Workshop UIUC



UF Machine Learning in HEP 2%

Machine Learning is already at the core of
what we do today

- Automated way to achieve better signal to
background separation

» Improved detector performance and related
measurements

— Flavor tagging of jets
— Particle Energies with Regression Methods

 Majority of HEP analyses already rely on some
type of Machine Learning

12/8/2016 S212 HEP-CS Workshop UIUC
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* |. Classification
— Particle Identification

 a photon or a jet? 9 -
— Advanced Pattern Recognition of
je _

* Hits clustering, jet substructure

— Searches for new Physics T E—
« Event Classification: is this a Higgs or not? _eor
— Data Quality Monitoring o T P
. Out| iers ::Zf lllustration only
* 1l. Function Estimation, Regression e
— Calorimetry

« Particle energy deposited in calorimeter better measured by
function of individual energy deposits obtained with ML methods

— Energy/Momentum regressions: photons, electrons, b-jets

12/8/2016 S212 HEP-CS Workshop UIUC 10
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* Naturally collaborative and cross-

cutting

— Statistics

— Theoretical Computer Science
— Mathematics

— Physics

» Excellent place for CS-HEP collaboration

12/8/2016 S212 HEP-CS Workshop UIUC
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* Require powerful ML algorithms

 Smart use of resources

— GPUs, clusters, spark, HPC

— Efficiency of application
 Latency, memory management

* Further ML applications in data
analysis and detectors

12/8/2016 S212 HEP-CS Workshop UIUC
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UF collaboration Areas
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» Software

 Algorithms

» Acceleration (hardware)
* Applications
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« ROOT framework has been around

HEP for 20+ years ROOT
— 1/O, histograms, statistics, data analysis s AT e
TMVA

— Core developers + eco-system
 TMVA machine learning toolkit ~10 years

old (integrated in ROOT ~3 years ago)

— Modernized over the past year

— Easy to use, basic and advanced ML methods

— Used by about 50% of HEP analysts
 Others rely on external tools

12/8/2016 S212 HEP-CS Workshop UIUC 16
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 Most natural area of collaboration

— Taking interesting directions from theoretical
CS and applying to HEP problems

— Looking at HEP problems and suggesting (1,
2...n) solutions

— Work together on the R&D

12/8/2016 S212 HEP-CS Workshop UIUC 17
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UF  AlgorithmsinUse &%

ML algorithms in HEP:

* Fisher, Quadratic

« Naive Bayes (Likelihood)
« Kernel Density Estimation
« Random grid search

» Boosted decision trees

* Rule ensembles

« Random forests

« Deep learning (neural networks)
— feed-forward, recurrent, convolutional, LTSM, Bayesian

« Support vector machines
* Genetic algorithms

12/8/2016 S212 HEP-CS Workshop UIUC
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Powerful Machine Learning method based
on Deep Neural Networks (DNN) that
achieves significant performance
Improvement in classification tasks

%Hiddenjﬁ Layers—— L

Inputs * 55 Output

u; = f (Wlx + 01) Ug = f(Wgul + 02) ug = f (W3U2 + 8‘;) uy = f (W4ll4 -+ 04)
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Higgs Boson Example:

Tuning deep neural network

architectures.

Hyper parameters Choices

Depth
Hidden units per layer

2,3,4,5,6 layers
100,200,300,500
0.01, 0.05
0, 0.00001

none, autoencoder

Learning rate

Weight decay
Pre-training

multi-task autoencoder

Input features low-level, high-level

complete set

Best:

I s I e s s R s e |

5 hidden layers

300 neurons per layer

Tanh hidden units, sigmoid output

No pre-training

Stochastic gradient descent

Mini batches of 100
Exponentially-decreasing learning rate
Momentum increasing from .5 to .99 over
200 epochs

Weight decay = 0.00001

Background Rejection

8% improvement

In major HEP experiments mechanisms exist for making computer

scientists authors on HEP papers

12/8/2016
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Since 2014 ~10 deep learning HEP papers:
 Jet Images and deep learning: link
» Jet substructure and deep learning: link

 Parton shower uncertainties and jet
substructure: link

* Deep learning for ttHiggs link
* Nova link

« Daya Bay link

* Next: link

* Microboone: link

12/8/2016 S212 HEP-CS Workshop UIUC


https://arxiv.org/abs/1511.05190
http://inspirehep.net/record/1437937/
http://inspirehep.net/record/1485081?ln=en
http://inspirehep.net/record/1491175?ln=en
http://inspirehep.net/record/1444342
https://arxiv.org/abs/1601.07621
http://inspirehep.net/record/1487439?ln=en
http://inspirehep.net/record/1498561?ln=en

UF Google Summer of Code &
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 CERN Software for Experiments
group participates since 2011
— This year 12 students (mostly CS ph.d. students)
— Lots of useful cs and software engineering work

— Excellent impact on our eco-system

— Will expand to an umbrella association
* Via HEP Software Foundation
« More mentors, projects, students
» Greater HEP involvement and impact
 Train future developers (CS students interested in HEP)

12/8/2016 S212 HEP-CS Workshop UIUC 22



UF Project Areas =

IIIIIIIIIII

FLORIDA

 Simulation
— Geant4 and GeantV

— Sixtrack (particle tracking) @) aﬁ

— Blond (beam dynamics)

« Data analysis tools L.
— Interactive ROOT Graphics Ces ‘t)

: : LHC@h
— Machine Learning SiET,ETE
* first time this year,
significant student interest RO OT

e Other utilities and tools TMVA

11/21/2016 Sergei V. Gleyzer GSoC 2016 23
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Background Rejection vs. Signal Efficiency Background Rejection vs. Signal Efficiency
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Deep Learning
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2.7

*

Theano
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Single precision

Excellent throughput
compared to Theano
on same GPU
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Glven enough data, estimate a function?

12/8/2016

Problem posed by Gauss (1805): Estimate
trajectory of comet from observations

Solution: Minimize difference between
measurements and predictions by varying
model parameters

S212 HEP-CS Workshop UIUC
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UF  Regression in HEP |
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Machine learning regression
* Improve detector resolution (~10-30%o)
« Example: estimate particle energy

* First implementations 3 . ,
1200} - — parametric
based on shallow methods & |
Emﬂﬂ_ ll _ BDT
— Neural networks, BDTs € | |
. Applications: s00f letion only
400 1
— EI?ctrons and photons 20| J)
— B-Jets, muons P L .
10 120 130 140

my, (GeV)
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 Take Into account dependencies between output
attributes (their correlations)

* Improved performance results compared to
single-objective models, especially in ensembles

* usually smaller and easier to interpret
* applicable to detector simulations

12/8/2016 S212 HEP-CS Workshop UIUC 30
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UF Unsupervised Learning

Most of Machine-Learning in HEP has been
focused on supervised learning

* Labeled data, answers are known

ML research shows better results when
combining supervised and unsupervised
learning

12/8/2016 S212 HEP-CS Workshop UIUC 31
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* Tracking

— Hundreds of particle trajectories
 Algorithms smarter than “Kalman filters”
 Low-level data

» Calorimetry
— Posed as an image problem
* Trigger

— Currently throwing away 99.9% of all events
e Better use of this data, smarter decisions

12/8/2016 S212 HEP-CS Workshop UIUC 33
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* |dentification of interesting (different)
physics
— Unsupervised learning

 Faster detector simulation
— We spend a lot of computing power doing this
— Replace with ML-based systems

» Better vertexing
— Still using methods from 20-30 years ago

12/8/2016 S212 HEP-CS Workshop UIUC 34
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Interfaces to External ML Tools

12/8/2016

RMVA interface to R
PYMVA Interface to scikit-learn

PyKeras interface to Keras
— High-level interface to Theano,

TensorFlow deep-learning libraries

S212 HEP-CS Workshop UIUC

Q@ learn

theano

%N

L

Tensor
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Added support for interactive ML with
Jupyter integration

 Interactive training
* Model tuning
 Visualizations

12/8/2016 S212 HEP-CS Workshop UIUC
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https://indico.cern.ch/event/565647/contributions/2308667/attachments/1345635/2028693/gsoc16_iml.pdf

UF Acceleration Hardware
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* Optimized hardware for machine
learning training and application

— Acceleration
 GPUs
e Combined FPGA-CPU systems

— Neuromorphic computing /\?‘jﬁi\&
— Other... ﬁr
}»_

12/8/2016 S212 HEP-CS Workshop UIUC
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UF Computing Resources
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Better ML training strategy and
regularization

* significant progress in overcoming

overtraining
more data > better outcomes

CMS,/!

 availability and optimal use of resources

12/8/2016

for training become key

— Use of GPUs, clusters, spark, HPC etc.

— Flexible programming model

S212 HEP-CS Workshop UIUC
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https://indico.cern.ch/event/565647/contributions/2308666/attachments/1345668/2028738/tmva_dnn_gpu.pdf
https://indico.cern.ch/event/571102/contributions/2342484/attachments/1359710/2057213/Presentation.pdf
https://github.com/JoeriHermans/dist-keras/blob/master/examples/workflow.ipynb

UF CWP
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HEP Software Foundation

« Community White Paper
— link to CWP

— Machine Learning
* ldentification of challenges
« Roadmap to address them

— Important to think of these issues now
 Impact on how we design our software

12/8/2016 S212 HEP-CS Workshop UIUC
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http://hepsoftwarefoundation.org/cwp.html
https://docs.google.com/document/d/1o9S0XE4ly4-LZh9y96DG-U7HH61m2cHboV6xSt1tI0g/edit

CMS
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Inter-experimental LHC Machine
L_earning Working Group iml.cern.ch
« Exchange between HEP and ML communities

« Sharing of ML expertise and experience among
LHC experiments

ML Forum and Education (Tutorials)

« ML software development and maintenance

— Connection to other efforts: AMVA4NewPhysics,
Diana-HEP, DS@LHC, HSF

12/8/2016 S212 HEP-CS Workshop UIUC 40
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UF Summary
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HL-LHC physics and computing challenges
will require significant progress:
* Higher backgrounds and pileup, data
volume, unknown new physics
— Machine learning offers a promising direction

— An opportunity to examine new areas of ML
applications to HEP

12/8/2016 S212 HEP-CS Workshop UIUC 41
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 Classification has been the primary focus for
ML in HEP

— Significant progress with Deep Learning
+ 10-20% improvement in classification
 Progress beyond fully interconnected architectures

* Other areas becoming increasingly important

— Machine-Learning Regression
« 10-25% improvements in detector resolution
» Good promise with Deep Learning

— Unsupervised learning

12/8/2016 S212 HEP-CS Workshop UIUC 42



HEP-CS Collaboratlon I\/Iodel

@/ FORGET THIS DO-1T-
(5| YOURSELF STUFF...

Ml NEXT TIME WE'RE
h_ USING A CONTRACTOR .

+ COMPUTER SCIENCE:®
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