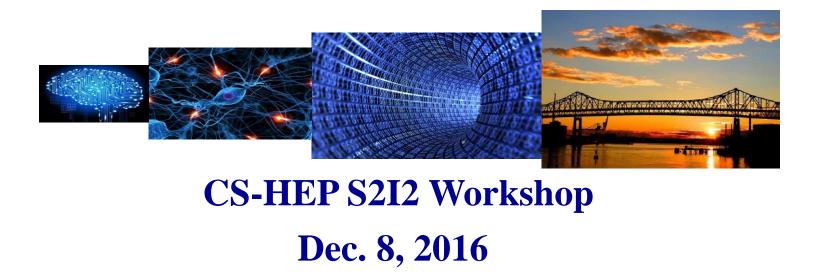
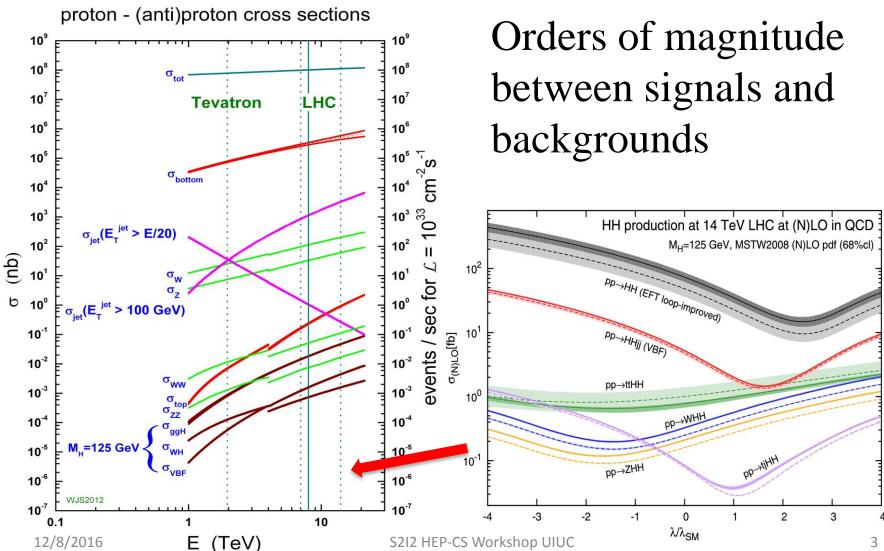


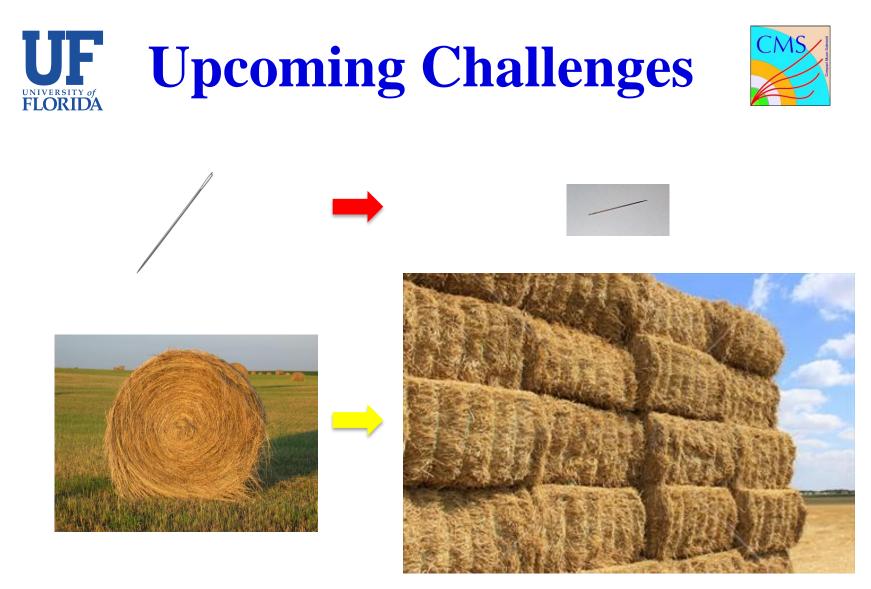
HEP-CS: Machine Learning Sergei V. Gleyzer University of Florida





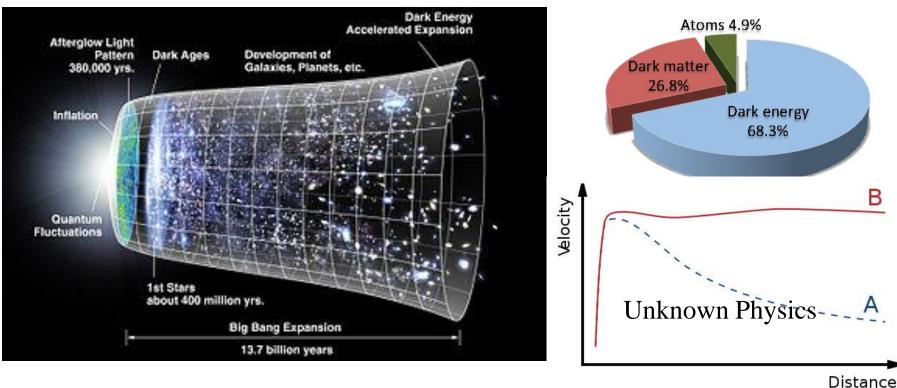
aMC@NLO

MadGraph5



Today

Near future



Data size:

- LHC **15,000,000 Tb** 2010 2035
- Resources not up as fast as data volumes

UF INIVERSITY OF Machine Learning in HEP

General Approach:

Given training data T_D = {y, x} = (y,x)₁ (y,x)_N, function space {f} and a constraint on these functions, teach a machine to learn the mapping y = f(x)

UF In Computer Science

Machine learning already preferred approach to

- Speech recognition, Natural language processing
- Computer vision, Robot control
- Medical outcomes analysis

Machine Learning field is growing fast

- Improved algorithms
- Increased data capture

UF Machine Learning in HEP

Machine Learning is already at the core of what we do today

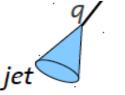
- **Automated** way to achieve better signal to background separation
- **Improved** detector performance and related measurements
 - Flavor tagging of jets
 - Particle Energies with Regression Methods
- Majority of HEP analyses already rely on some type of Machine Learning

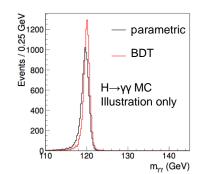
HEP Applications

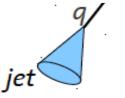
- I. Classification
 - Particle Identification
 - a photon or a jet?
 - Advanced Pattern Recognition
 - Hits clustering, jet substructure
 - Searches for new Physics
 - Event Classification: is this a Higgs or not?
 - Data Quality Monitoring
 - Outliers

• II. Function Estimation, Regression

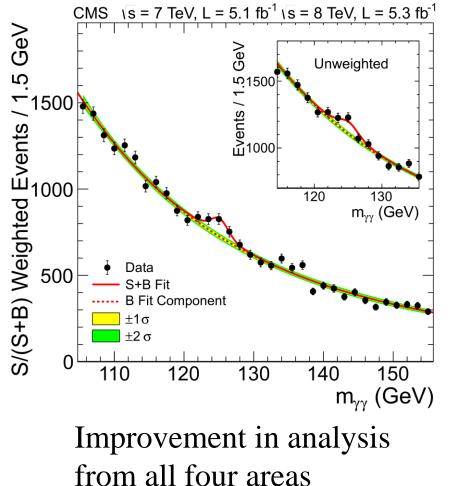
- Calorimetry
 - Particle energy deposited in calorimeter better measured by function of individual energy deposits obtained with ML methods
- Energy/Momentum regressions: photons, electrons, b-jets





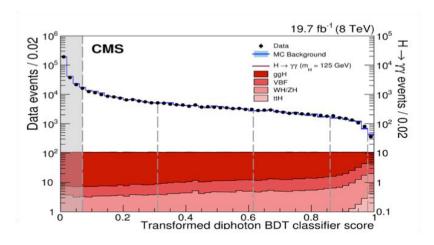


Higgs Discovery



Machine Learning used in Higgs Discovery

- Event selection
- Identification of particles
- Identification of interactions
- Energy regression



∖ | | |

UNIVERSITY of

Machine Learning

- Naturally collaborative and crosscutting
 - Statistics

- Theoretical Computer Science
- Mathematics
- Physics
- Excellent place for CS-HEP collaboration

Towards Future

- Require powerful ML algorithms
- Smart use of resources
 - GPUs, clusters, spark, HPC
 - Efficiency of application
 - Latency, memory management

• Further ML applications in data analysis and detectors

UF HEP-CS Collaboration

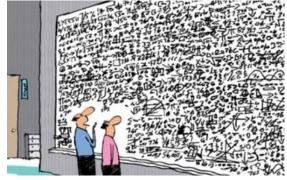
- Software
- Algorithms
- Acceleration (hardware)
- Applications

- ROOT framework has been around HEP for 20+ years
 - I/O, histograms, statistics, data analysis
 - Core developers + eco-system

- TMVA machine learning toolkit ~10 years old (integrated in ROOT ~3 years ago)
 - Modernized over the past year
 - Easy to use, basic and advanced ML methods
 - Used by about 50% of HEP analysts
 - Others rely on external tools

Algorithms

- Most natural area of collaboration
 - Taking interesting directions from theoretical CS and applying to HEP problems
 - Looking at HEP problems and suggesting (1, 2...n) solutions
 - Work together on the R&D

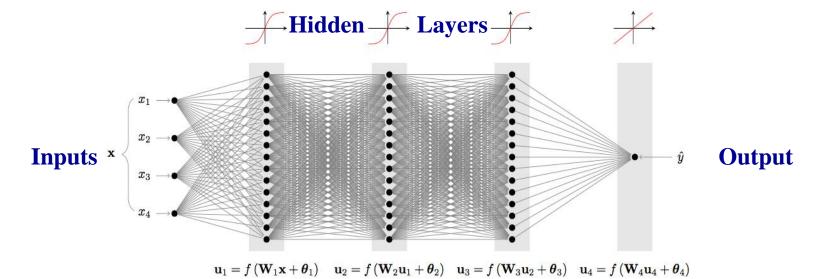


Algorithms in Use

ML algorithms in HEP:

- Fisher, Quadratic
- Naïve Bayes (Likelihood)
- Kernel Density Estimation
- Random grid search
- Boosted decision trees
- Rule ensembles
- Random forests
- Deep learning (neural networks)
 - feed-forward, recurrent, convolutional, LTSM, Bayesian
- Support vector machines
- Genetic algorithms

Powerful Machine Learning method based on Deep Neural Networks (DNN) that achieves significant performance improvement in classification tasks



Deep Learning

Higgs Boson Example:

P. Baldi, et. al. 2014

DN lo+hi-level (AUC=0.88)

NN lo+hi-level (AUC=0.81)

NN hi-level (AUC=0.78)

NN lo-level (AUC=0.73)

0.4

0.6

0.8

Signal efficiency

DN lo-level (AUC=0.88)

----- DN hi-level (AUC=0.80)

0.2

Background Rejection

0.8

0.6

0.4

0.2

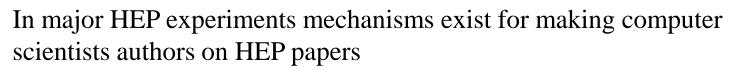
0

Tuning deep neural network architectures.

Hyper parameters	Choices
Depth	2,3,4,5,6 layers
Hidden units per layer	$100,\!200,\!300,\!500$
Learning rate	0.01,0.05
Weight decay	0, 0.00001
Pre-training	none, autoencoder
	multi-task autoencoder
Input features	low-level, high-level
	complete set

Best:

- 5 hidden layers
- 300 neurons per layer
- Tanh hidden units, sigmoid output
- No pre-training
- Stochastic gradient descent
- Mini batches of 100
- Exponentially-decreasing learning rate
- Momentum increasing from .5 to .99 over 200 epochs
- Weight decay = 0.00001



Since 2014 ~10 deep learning HEP papers:

- Jet images and deep learning: <u>link</u>
- Jet substructure and deep learning: <u>link</u>
- Parton shower uncertainties and jet substructure: <u>link</u>
- Deep learning for ttHiggs <u>link</u>
- Nova <u>link</u>
- Daya Bay <u>link</u>
- Next: <u>link</u>
- Microboone: <u>link</u>

UF UF Google Summer of Code

- CERN Software for Experiments group participates since 2011
 - This year 12 students (mostly CS ph.d. students)
 - Lots of useful cs and software engineering work
 - Excellent impact on our eco-system
 - Will expand to an umbrella association
 - Via HEP Software Foundation
 - More mentors, projects, students
 - Greater HEP involvement and impact
 - Train future developers (CS students interested in HEP)

Project Areas

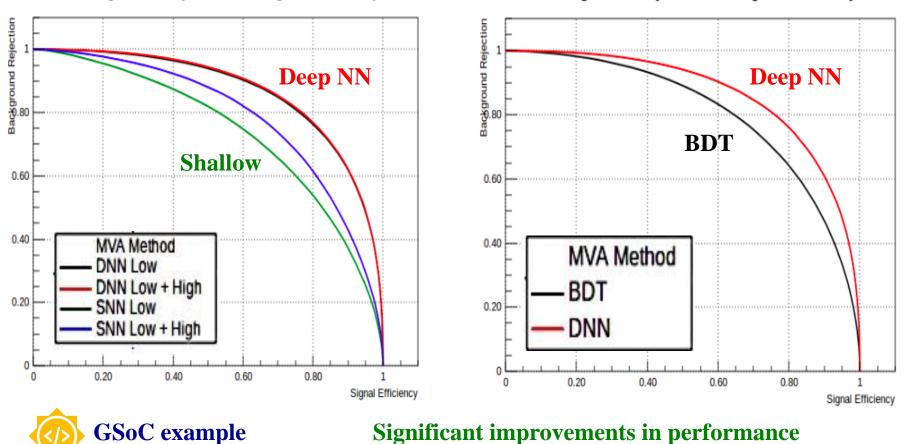
• Simulation

UNIVERSITY of **FLORIDA**

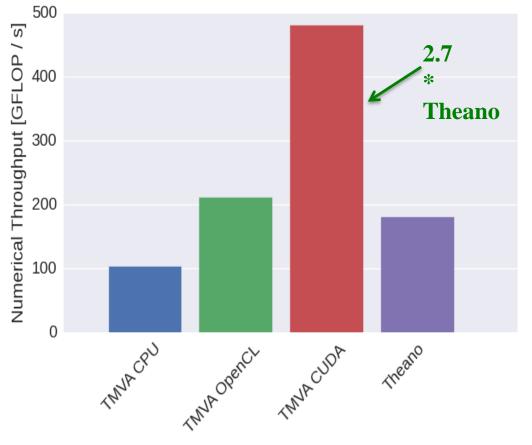
- Geant4 and GeantV
- Sixtrack (particle tracking)
- Blond (beam dynamics)
- Data analysis tools
 - Interactive ROOT Graphics
 - Machine Learning
 - first time this year, significant student interest
- Other utilities and tools

Background Rejection vs. Signal Efficiency

Background Rejection vs. Signal Efficiency



Throughput Comparison



Single precision

Excellent throughput compared to Theano on same GPU

Beyond Classification

Given enough data, estimate a function?

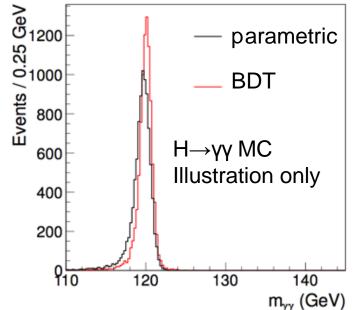
Problem posed by Gauss (1805): Estimate trajectory of comet from observations

Solution: Minimize difference between measurements and predictions by varying model parameters

Regression in HEP

Machine learning regression

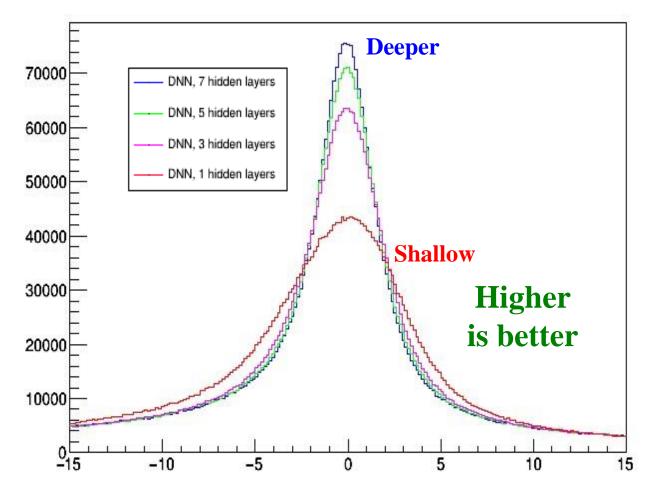
- Improve detector resolution (~10-30%)
- Example: estimate particle energy
- First implementations based on shallow methods
 - Neural networks, BDTs
- Applications:
 - Electrons and photons
 - B-jets, muons



UNIVERSITY of **FLORIDA**

UF Deep Learning Regression

Prediction Error



UF WILTONIDA Multi-objective Models

- Take into account **dependencies** between output attributes (their correlations)
- **improved performance results** compared to single-objective models, especially in ensembles
- usually smaller and easier to interpret
- applicable to detector simulations

Most of Machine-Learning in HEP has been focused on supervised learning

• Labeled data, answers are known

ML research shows better results when combining supervised and unsupervised learning

Building Bridges

Interesting Areas

- Tracking
 - Hundreds of particle trajectories
 - Algorithms smarter than "Kalman filters"
 - Low-level data
- Calorimetry
 - Posed as an image problem
- Trigger
 - Currently throwing away 99.9% of all events
 - Better use of this data, smarter decisions

Interesting Areas

- Identification of interesting (different) physics
 - Unsupervised learning
- Faster detector simulation
 - We spend a lot of computing power doing this
 - Replace with ML-based systems
- Better vertexing
 - Still using methods from 20-30 years ago

TMVA Interfaces

Interfaces to External ML Tools

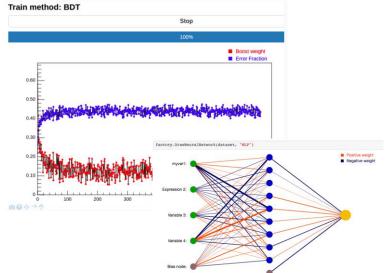
- RMVA interface to R
- PyMVA interface to scikit-learn
- PyKeras interface to Keras
 - High-level interface to Theano, TensorFlow deep-learning libraries

UNIVERSITY OF FLORIDA

Interactive ML

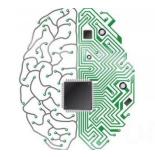
Added support for interactive ML with Jupyter integration

- Interactive training
- Model tuning
- Visualizations



UF Acceleration Hardware

- Optimized hardware for machine learning training and application
 - Acceleration
 - GPUs
 - Combined FPGA-CPU systems
 - Neuromorphic computing
 - Other...



Better ML training strategy and regularization

- significant progress in overcoming overtraining
- more data → better outcomes
- availability and optimal use of resources for training become key
 - Use of <u>GPUs</u>, <u>clusters</u>, <u>spark</u>, HPC etc.

- Flexible programming model

CWP

HEP Software Foundation

- Community White Paper
 - link to CWP
 - Machine Learning
 - Identification of challenges
 - Roadmap to address them
 - Important to think of these issues now
 - Impact on how we design our software

Inter-experimental LHC Machine Learning Working Group <u>iml.cern.ch</u>

- Exchange between HEP and ML communities
- Sharing of ML expertise and experience among LHC experiments
- ML Forum and Education (Tutorials)
- ML software development and maintenance
 - Connection to other efforts: AMVA4NewPhysics, Diana-HEP, DS@LHC, HSF

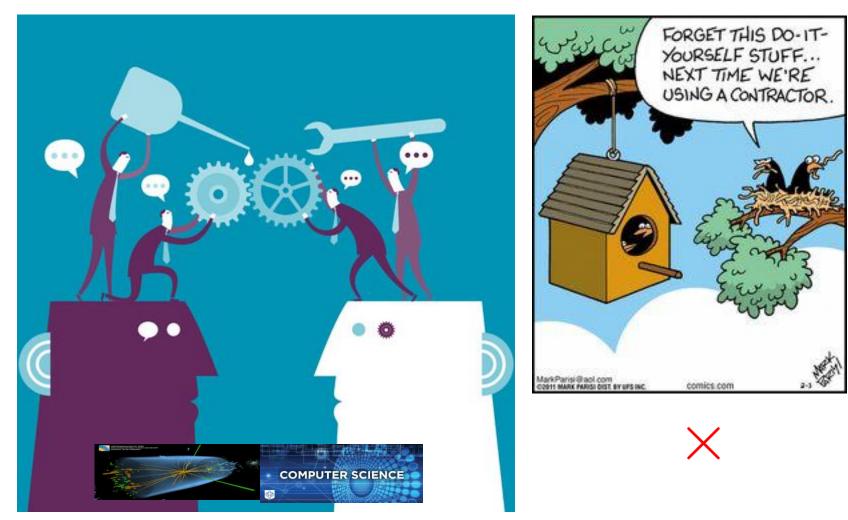
Summary

HL-LHC physics and computing challenges will require significant progress:

- Higher backgrounds and pileup, data volume, unknown new physics
 - Machine learning offers a promising direction
 - An opportunity to examine new areas of ML applications to HEP

- Classification has been the primary focus for ML in HEP
 - Significant progress with Deep Learning
 - 10-20% improvement in classification
 - Progress beyond fully interconnected architectures
- Other areas becoming increasingly important
 - Machine-Learning Regression
 - 10-25% improvements in detector resolution
 - Good promise with Deep Learning
 - Unsupervised learning

HEP-CS Collaboration Model



Thank You

...

 \odot
