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Introduction



Accelerator lattice cell
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 An accelerator is usually build using a number of basic ‘cells’.

 The cell layouts of an accelerator come in many subtle variants.

 For today we consider a simple FODO cell containing:

– Dipole magnets to bend the beams,

– Quadrupole magnets to focus the beams,

– Beam position monitors (BPM) to measure the beam position,

– Small dipole corrector magnets for beam steering.

Quadrupole 

(focussing)

Quadrupole 

(de-focussing)

Dipole Dipole

Beam 

position 

monitor

Beam 

position 

monitor

Dipole 

corrector

Dipole 

corrector

beam

Schematic of a ½ cell



Dipole magnet
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 The dipole has two magnetic poles and generates a homogeneous field 

providing a constant force on all beam particles – used to deflect the beam.

– A dipole corrector is just a small version of such a magnet, dedicated to steer the 

beam as we will see later.

Fx

x

Horizontal deflection

By
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Vertical deflection
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 v

Lorentz force:

orthogonal to the speed and 

magnetic field directions
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Quadrupole magnet
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 A quadrupole has 4 magnetic poles.

 A quadrupole provides a field (force) that increases linearly with the 

distance to the quadrupole center – provides focussing of the beam.

– Similar to an optical lens, except that a quadrupole is focussing in one plane, 

defocussing in the other plane.

𝑭𝒚 = 𝒌 𝒚 𝑭𝒙 = −𝒌 𝒙

Force pushes the particle away 

from the center defocussing

Force pushes the particle 

towards the center focussing

N
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Fx

Fy



A realistic lattice - LHC
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 The LHC arc section are equipped with 107 m long F0D0 cells. Besides our 3 

main elements the LHC cell is equipped with other correction (trim) magnets.

o MB: main dipole

o MQ: main quadrupole

o MQT: trim quadrupole

o MQS: skew trim quadrupole

o MO: lattice octupole (Landau damping)

o MSCB: sextupole + orbit corrector dipole

o MCS: Spool piece sextupole

o MCDO: Spool piece 8 / 10 pole

o BPM: Beam position monitor



Recap on beam optics
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 There are a few quantities related to a beam optics in a circular 

accelerator that we will need for the lecture:

– The betatron function (b) that defines the beam envelope,

• Beam size / envelope is proportional to b

– The betatron phase advance (m) that defines the phase of an oscillation.

LHC optics at injection

zoom

zoom

one cell



Recap on beam optics
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 Consider a particle moving in a section of the accelerator lattice. The 

focussing elements make it bounce back and forth. 

 Does this not look a bit like a periodic oscillation? This is called a 

betatron oscillation. 

…

one cell one cell

Another section of the accelerator Another section of the accelerator



Recap on beam optics for pedestrians
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 The number of oscillation periods for one turn of the machine is 

called the machine tune (Q) or betatron tune. 

– In this example Q is around 2.75 – 2 periods and ¾ of a period.

 It is possible to change the coordinates (from the longitudinal 

position in meters to the betatron phase advance in degrees) and 

transform this ‘rocky’ oscillation into a pure sinusoidal oscillation.

– Very convenient (and simpler) way to analyse the beam motion. 

1 period
1 period 1 period

Betatron phase m

Longitudinal coord. s

position

position/b
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Imperfection - sources



From model to reality - fields
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 The physical units of the machine model defined by the accelerator 

physicist must be converted into magnetic fields and eventually into 

currents for the power converters that feed the magnet circuits.

 Imperfections (= errors) in the real accelerator optics can be introduced 

by uncertainties or errors on:

– Beam momentum, magnet calibrations and power converter regulation. 

Example of the LHC main 

dipole calibration curve

Magnet 

strength
Magnetic field

(gradient)

Requested 

current

Beam 

momentum
Magnet 

calibration curve 

(transfer function)

Power converter

Actual 

magnet 

current



From the lab to the tunnel
F

e
b

 2
0

1
7

C
E

R
N

 C
A

S
 -

L
in

e
a

r 
Im

p
e

rf
e
c

ti
o

n
s
 -

J
. 

W
e

n
n

in
g

e
r

12



From model to reality - alignment
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 To ensure that the accelerator elements are in the correct position the 

alignment must be precise – to the level of micrometres for CLIC !

– At the CERN hadron machines we aim for accuracies of around 0.1 mm.

 The alignment process implies:

– Precise measurements of the magnetic axis in the laboratory with reference 

to the element alignment markers used by the survey group.

– Precise in-situ alignment (position and angle) of the element in the tunnel.

 Alignment errors are a common source of imperfections. 



A good attitude in the tunnel
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Please remember that accelerator components in the CERN 

tunnels are carefully aligned – please treat with respect !

Use the 

ladder !
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Orbit perturbations



Imperfection – undesired deflection
F

e
b

 2
0

1
7

C
E

R
N

 C
A

S
 -

L
in

e
a

r 
Im

p
e

rf
e
c

ti
o

n
s
 -

J
. 

W
e

n
n

in
g

e
r

16

 The presence of an unintended deflection along the path of the 

beam is a first category of imperfections.

 This case is also in general the first one that is encountered 

when beam is first injected…

 The dipole orbit corrector is added to the cell to compensate

the effect of unintended deflections.

– With the orbit corrector we can generate a deflection of opposite 

sign and amplitude that compensates locally the imperfection.

 How can an unintended deflection appear?



Unintended deflection
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 The first source is a field error (deflection error) of a dipole magnet.

 This can be due to an error in the magnet current or in the 

calibration table (measurement accuracy etc).

– The imperfect dipole can be expressed as a perfect one + a small error.

= +
real dipole ideal dipole small dipole error

 A small rotation (misalignment) of a dipole magnet has the same 

effect, but in the other plane.

= +

real dipole ideal dipole
small dipole error



Unintended deflection
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= +

real quadrupole ideal quadrupole

 The second source is a misalignment of a quadupole magnet.

– The misaligned quadrupole can be represented as a perfectly aligned 

quadrupole plus a small deflection.

small dipole error

No magnetic field on 

the beam axis

Non-zero magnetic field 

on the beam axis !
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Effect of a deflection
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 We set the machine tune to 

an integer value:

– Q = n N

Turn no 1

Turn no 2

Turn no 3

Turn no 4

Deflection

Particle direction

 When the tune is an integer 

number, the deflections 

add up on every turn !

– The amplitudes diverge, 

the particles do not stay 

within the accelerator 

vacuum chamber.

 We just encountered our 

first resonance – the 

integer resonance that 

occurs when Q = n N



Effect of a deflection
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 We set the machine tune to 

a half integer value:

– Q = n+0.5, n N

Turn no 1

Deflection

Particle direction

 For half integer tune values, 

the deflections 

compensate on every 

other turn !

– The amplitudes are stable.

 This looks like a much 

better working point for Q!

Turn no 2

Turn no 3

Turn no 4



Effect of a deflection
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 We set the machine tune to 

a quarter integer value:

– Q = n+0.25, n N

Turn no 1

Deflection

Particle direction

 For quarter tune values, the 

deflections compensate 

every four turns !

– The amplitudes are stable.

 Also a reasonable working 

point for Q!

Turn no 2

Turn no 3

Turn no 4



Many turns reveal something
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Q = n + 0.5 Q = n + 0.4

Q = n + 0.3 Q = n + 0.2

Q = n + 0.05

 The particles oscillate around a 
stable mean value (Q ≠ n)!

 The amplitude diverges as we 

approach Q = n  integer resonance

Q = n + 0.1

Q = n

 Let’s plot the 50 first turns on top of each other and change Q.

– All plots are on the same scale



The closed orbit
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 The stable mean value around which the particles oscillate is 

called the closed orbit.

– Every particle in the beam oscillates around the closed orbit.

– As we have seen the closed orbit ‘does not exist’ when the tune is 

an integer value.

 The general expression of the closed orbit x(s) in the presence 

of a deflection q is:

q


mmbb qq

)sin(2

)|)(cos(|)(
)(

Q

Qss
sx




oscillating term

kink at the location 

of the deflection

divergence for Q = n

amplitude modulated 

by the envelope b



Closed orbit example
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 Example of the horizontal closed orbit for a machine with tune Q = 6 + q.

 The kink at the location of the deflection () can be used to localize 

the deflection (if it is not known)  can be used for orbit correction.

Q = 6.5

Q = 6.2Q = 6.1

Q = 6.9 Q = 6.7



A deflection at the LHC
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 In the example below for the 26.7km long LHC, there is one 

undesired deflection, leading to a perturbed closed orbit. 

BPM index along the LHC circumference

Beam position x (mm)

Where is the location of the deflection?



Beam position x/b

A deflection at the LHC
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 To make our life easier we divide the position by b(s) and 

replace the BPM index by its phase m(s).

Can you localize the deflection now?

)|)(cos(|
)sin(2

)|)(cos(|

)(

)(
Qs

Q

Qs

s

sx
mmq



mmb

b
q

qq





Betatron phase m



A more realistic case at LHC
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 Now a more realistic orbit with 100’s of deflections.

How do we proceed to correct?



Back to the early days of CERN
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 The problem of correcting the orbit 

deterministically came up a long 

time ago in the first CERN 

machines.

 B. Autin and Y. Marti published a 

note in 1973 describing an 

algorithm that is still in use today 

(but in JAVA/C/C++ instead of 

FORTRAN) at ALL CERN 

machines:

– MICADO*

(Minimization of the quadratic orbit distortions)



MICADO - how does it work?
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 The intuitive principle of MICADO is rather simple.

 Preparation:

– You need a model of your machine,

– You compute for each orbit corrector what the effect (response) is 

expected to be on the orbit.

...



MICADO - how does it work?
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 MICADO compares the response of every corrector with the raw orbit.

 MICADO then picks out the corrector that hast the best match with the orbit, 

and that will give the largest improvement to the orbit deviation rms.

 The procedure can be iterated until the orbit is good enough (or as good as it 

can be).

…



LHC orbit correction example
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 The raw orbit at the LHC can have huge errors, but the correction (based 

partly on MICADO) brings the deviations down by more than a factor 20.

MICADO & Co

LHC vacuum chamber

44 mm

34 mm

50 mm

Corrected horizontal 

orbit of ring 1

At the LHC a good orbit correction is vital !

Uncorrected horizontal 

orbit of ring 1

50 mm
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Optics perturbations



Quadrupole gradient errors
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 What is the impact of a quadrupole gradient error?

– Let us consider a particle oscillating in the lattice. 

Too strong gradient / lens

The oscillation period is affected  change of tune, here Q increases !



Optics perturbation
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 In a ring a focussing error affects the beam optics and envelope 

(size) over the entire ring ! It also changes the tune.

Nominal optics

Perturbed optics

Example for LHC: one quadrupole gradient is incorrect

Zoom into a subsection



Optics perturbation
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 The local beam optics perturbation… note the oscillating pattern 

of the error.

Nominal optics

Perturbed optics



Optics perturbation
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 The error is easier to analyse and diagnose if one considers the ratio of 

the betatron function perturbed/nominal.

 The ratio reveals an oscillating pattern called the betatron function 

beating (‘beta-beating’). The amplitude of the perturbation is the same 

all over the ring !



Optics perturbation
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 The beta-beating pattern comes out even more clearly if we replace the 

longitudinal coordinate with the betatron phase advance.

 The result is very similar to the case of the closed orbit kick, the error 

reveals itself by a kink !

– If you watch closely you will observe that there are two oscillation periods 

per 2 (360 deg) phase. The beta-beating frequency is twice the frequency 

of the orbit !



Correction
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 How can one correct such beta-beating?

 The correction strategy with MICADO can be applied !

– You can build the response of any gradient change on the optics (b).

– You can use MICADO to look for the best possible solution.

– The correcting elements are the quadrupole themselves (adjust their 

current).

 For optics corrections more sophisticated and powerful algorithm 

provide however better correction strategies.



LHC optics correction
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 In collision at top energy of 6.5 TeV, the optics is wrong by 100% 

before correction.

– Can be corrected to a few % residual error with modern correction 

algorithms.
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Coupling between planes



Tilted quadrupole
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 If a quadrupole is rotated by 45º (‘skew quadrupole’) one obtains 

an element where the force (deflection) in x depends on y and 

vice-versa: the horizontal and vertical planes are coupled. 

normal quadrupole

N

NS

S

By

y

x

skew quadrupole

Bx

N

N

S

S

y

x

Fx = -k x

Fy = k y

Fx = k y

Fy = -k x

Fx

Fy

Fy

No mixing of 

planes
Full mixing 

of planes



Coupling
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 Small quadrupole tilts lead to coupling of the x and y planes.

 The coupling can be corrected by installing dedicated skew 

quadrupoles to compensate for alignment errors.

ideal quadrupole

N

NS

S

By

y

x

tilted quadrupole

y

x = +

skew quadrupole

Bx

N

N

S

S

y

x



Coupling and tune observation
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 The simplest thing to determine if there is coupling is to kick the beam in 

one plane to generate an oscillation, and then observe the oscillations or 

the frequency content.

– Or just use the natural beam oscillations if they exist.

 If coupling is present, then for a horizontal kick there will be a small 

vertical oscillation (and vice-versa).

Turn by turn recording of the beam position at one BPM



Coupling observation
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 We apply a Fourrier analysis to the position data to extract the beam 

oscillation frequencies.

 The ratio of the vertical to horizontal amplitude measures the 

amount of coupling  now one can tune the skew quadrupoles until the 

vertical tune peak disappears.

Example : horizontal beam position at a BPM 

observed turn by turn

The horizontal 

tune @ 0.27 
The horizontal 

tune @ 0.27 

The vertical 

tune @ 0.295 

Logarithmic 

scale

Fourrier analysis



Summary
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 We have seen that magnetic field errors and misalignments of 

accelerator components induce:

– Errors on the beam orbit,

– Errors on the optics and the tune,

– Coupling between the horizontal and vertical planes.

 The errors are often sufficiently large (for sure at LHC) that the 

machine operates poorly or not at all.

 Since the 1970’s ever improving tools and algorithms have been 

developed to correct for such errors.

 However to minimize the imperfections from the start we need:

– well measured calibration curves of magnets,

– precise power converters,

– the best possible machine alignment.
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What value for the tunes?
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 Various collider tune working points.


