“ They say that understanding ought to work by the rules of right reason.

These rules are, or ought to be, contained in Logic; but the actual science
of logic is conversant at present only with things either certain,
Impossible, or entirely doubtful, none of which (fortunately) we have to
reason on.

Therefore, the true logic of this world is the calculus of Probabilities,
which takes account of the magnitude of the probability which is, or
ought to be, in a reasonable man's mind”

J. Clerk Maxwell
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1) THE ELEMENTS OF

PROBABILTY
(Q,B,,P)

A. N. Kolmogorov (1933)+... 5




1) Events and Sample Space (Q)‘

Event: Object of questions that we make about the result of the experiment such
that the possible answers are: “it occurs” or “it does not occur”

Elementary: those that can not be decomposed
in others of lesser entity

Sample Space: () = {Setof all the possible elementary results of a
random experiment}

The elementary events have to be:

exclusive: if one happens, no other occurs
exhaustive: any possible elemental result has to be included in Q

{ek}isapartitionof Q — Q:Uek ekﬂej:(z) ;Vk,j k;éj
vk

- sure: get any result contained in Q
Types of Impossible: to get a result that is not contained in Q)
Events randomevent:  any event that is neither impossible nor sure 4




EXAMPLE: Z — f f |

elementary events:

elz{Z—>e+e‘}; oo (g {Z—)vv} QZ{E e e g }
109700 04 Sl 1
={Z >ut}; ... e, =¢Z —>bb}

Sure event: S ={Z — fermions} Impossible event: | ={Z —>e u"}
Non-elementary events: A={Z — leptons} = Ue —{Z > hadrons} Ue
B, ={Z — charged leptons} = Uez, ... B, {Z — neutral  leptons} = Uez, ;

i=1
(Q) ... but we are interested in many events (questions) other than the
elementary ones...
B, ={Z — charged leptons} ? B, ={Z — neutral leptons} ?

A={Z — leptons} = BlU B, ? ...ifnot whatoccursis A° ={Z — hadrons}

They are all sets ...

and we are about to see that Probability is a measure on sets so we have to
single out the sets we are interested in (... sets that we want to “measure”) so...




2) Measurable Space (Q,B,,)
C2: Sample Space

B, : Algebra ——p Class of events closed under union and complements

Why algebra B, ? We are interested in a class of events that:

1)| Contains all possible results of the experiment we are interested in

2)| Isclosed under union and complementation

VA,A,eB, —» AUA eB, ; A’ eB,

=» QcB,; 0eB,;, ANAeB,; A"UA eB,; A"NA €eB,;...

Morgan’s laws : (A JA, S = A°NAS ;...

So now we have: 1) € has all the elementary events

2) B has all the events we are interested in




We can construct several possible algebras:

EXAMPLE: Z > f f

Q:{el,ez,...,eloiell}

Minimal: B__ ={Q,0}

6
" A={Z > leptons}=| Je,
i=1

Interest in decay type: . B= {Q,(Z), A, AC}

11

A° ={Z — hadrons} =|_Je,
) i=7

Maximal: B, =1{Q,0,all possible subsets of Q}
(power set 2(Q2))

N ) n
dim(Q)=n —> (kjSubsetswnh k elements —> Z E — 2"  elements
k=0

(o) ol

More General Structures of the algebra...

6




Structure of algebra B, | (1)

Dimension of Sample Space

[ Finite

Q=1ie,8,,6,,8,,6,8
drawing a die {1 21931%41 %5 6}

Denumerable
throw a coin and stop when we gethead Q= {h, th, tth, ttth, ...}

Non-denumerable
\ decay time of a particle

dim(Q) =

N

Q:{teR+}

dim(Q) @ — (B, has the structure of Boole algebra




Structure of algebra B, | (2)

dim(<2) denum@

Generalize the Boole algebrasuchthat | and ([ )can be performed
Infinite number of times resulting on events of the same class (closed)

Ak cBs > UA<B,

VAeB, — A°eB, [ﬂ’* e B)

 — BQ has structure of c-algebra

All c-algebras are Boole algebras but not all Boole algebras are c-algebras 8



_ As we shall see, we are interested in R "
dlm(Q) non-denumerable s0... What about #(R) (2™) ?

Certainly is an algebra but ...

Which are the “basic” events to construct a useful algebra (for us)?

R HNEAI SELOF POINES oot

Among its possible subsets L N Lo Ll Y D
are the intervals [ )( ] ( )[ ]
points
(degenerated interval) R
{aj=a,a]

[a,a)=(a,a]=(aa)=0

Any collection of intervals,
— (— 00 oo) denumerable or not,
is a subset of R

Nice sets but... a collection of intervals Is a s-algebra ?

finite or denumerable of
intervals is an interval ...but...




Generate a 6-algebra
for instance, from... half open intervals on the right

1) Initial Set (2,): Contains all half-open intervals on the right [a, b)

2) Form the set 22, by adding their countable unions and complements

o I

(a,b)=U_a+%,b (a,b]:@(a,bJr%)

n=.

= ﬂ ab+ }/ fal=[aa] .. It has all intervals and points ...
' N among other elements

=

(S5

nN=

3) Add sets to close under countable union and complementation
There is at least one c-algebra containing 2,

Borel s-algebra (Bg) : Smallest o-algebra
of subsets of R that cerfains intervals ([a,b),...)

N,Z,Qc B; Maystartaswellwith (a,b], (a,b), [a,b]
Its elements are Borel sets (borelians)

Next: (Q,B,)@u=| 1




3) Measure Space (Q,B,, , u) ‘

Measure:

1) Set function

u:AeB, - R (one and only one real number)

1) g~additive  For any countable sequence of disjoint sets of B,

111) Non-negative

Fy A A =0 ﬂ@/x}iu(m

i j=1

1#

“signed measure” on g-algebra BQ

u:AeB, —> u(A) e[0,o)

oo Mmeasure

» Measure Space (€2, B, 1)

Two important measures

> 11



Lebesque Measure In R"  Translation invariant & A([0,1]") =1

f c-additive
(R ,B,ﬂ) / j,([)(l,)(z]):xz_)(1
e All Borel Sets of R" are Lebesgue Measurable = A([X,, X,)) = ...

® There are non-denumerable subsets of R with zero Lebesgue measure
e Not all subsets of R are Lebesgue measurable (—Axiom of Choice)

® [ ebesgue measurable sets (C) notin B (A1(AeBg\C)=0)

» Probability Measure | #4:A€Bg — [0’116 R
p(€) =1 (certainty) (notation u— P)

(Q,B,)®u= | P Probability Space (Q2,B,,P)

® Any bounded measure can be converted in a probability measure
12



From ii) (e-additivity for disjoint sets): u[@ Aij = iy(&)

Properties of measure... eventually properties of probability
vV ABeB,:
e e A; A° B, disjoint sets
A)=u(AUA)— u(A e
HA) = i )~ 1(A) HAOA®) = u(A) + u(A°) > p(A°) = (AU A") — u(A)
#(0) =0 1(0) = (AN A®) = u(A) + u(A°) — (AU A°) =0

Q=AUA® - P(A°) = P(Q) - P(A) =1- P(A),... P(0)=P(Q°)=0,...

w(B\VA) = u(B)— u(A) >0 if AcB—B=AU{B\A} both disjoint
P(B\ A) = P(B) - P(A) #(B) = u(A) + u(B\A) —> u(B/ A) = p(B) — u(A) 2 0
(B\A=BNA")

U(AUB) = u(A)+ u(B)— u(AnB)| A=AnB;A =AVA A =B\A all A disjoint sets
AUB=A UA UA, > u(AUB) = u(A)+ u(A) + u(A,)
P(AUB)=P(A)+P(B)-P(ANB)| A-a A — uA)=u(A)su(A)
B=AUA, — ﬂ(B)=u(A1)+ﬂ(Aa)}
—> (A + p(A) + p(Ag) = p(A) + w(B) — u(A)

() 13




EXAMPLE: Z — f f A={Z — leptons} A° ={Z — hadrons} B = {Q’@’ A AC}

1:SeB, —)[O,l]eR u(A) =0.3
u(Q)=1 (certainty) u(A*)=1-u(A)=0.7
1(0) =

Now we have the Probability Space (Q),B, ,P) ...
... but the results of the experiment are not necessarily numeric, expectations,... >

Random quantities (“variables”)

Associate to each elementary event of the sample space 2 one, and
only one, real number through a function (misfortunately called

X (W) ‘we O > X (W) cR “random variable”)

h Induced Space ——

(Q, B)—)(QI,B) —> (QB,P)—>(Q,B,,R)

v

Interestin: (R, B;y) P =P(X =k)or P(X (a,b))

X(w): Is neither random nor variable
What is random is the outcome of the experiment before it is done 14



iti X
AR (Q,—) (R,Bg) But B has the events of interest so:
—

To keep the structure of the c-algebra B it IS necessary tha?

VAeB,. X '(A)eB

(i.e. the function X(W) be Lebesgue (...Borel) measurable))

f(w):weQ—>A isBorel measurable... wrt the g-algebra associated to Q

EXAMPLE: Z - f f A={Z > Ieptons}=0ei A ={Z —> hadrons}:tjei B= {Q,@, A, AC}

i=1

Q:{el,ez,...,elo,eﬂ} X(w):weQQ—> X(w)eR e B,

e

Is the function X (w) an admissible random quantity? vVaeR |X '(-o,a]eB 797

- g - g

l)X (&) = X~e—)~.2((§jl_ &,Hre;) ~ X e, (e,) =1 In this case is simpler: B, = {-11}0,{3,{-1}}
X.(e,="XTe,) = X (6, = X{em }==1 so checkthat X *({-})eBand X *({I}) B

X ({-1) = {OeZk} ¢ B

2) X(g)=...=X(g) =1 X(&)=...= X (&) =1
a<-1 »0eB -l<a<l —|Je=A°eB 1l<a —>QeB -

i=7




... Types of Random Quantities...

ﬁdicator function: \

1 1If xeA
0 If xgA

AcQ; ¥YxeQQ — 1A(X)i{

ABcQ: 1, .(xX)=min{l,(x),1;(x)}=1,(X)1;(x)

1AUB (X) — maX{lA(X)’lB (X)} — 1A(X) + 1B (X) — 1A(X)lB (X)
\ 1.(x)=1-1,(x) J

16




Types of Random Quantities

Finite / countable set  Discrete r.q.
Codomain of X(wW):weQ— X(w) eR

Uncountable set Continuous r.q.
{Ak }keN Partition of Q) = U A For all elements of 2 that belongto A, ,
k X(w) assigns the same value x,
/ Discrete random quantity \
> {Ak }Ezl finite partition of Q=| |A | P> {A |7 countable partition of Q= |A
k

k:l k:].

> X(@) =3 %1, (@) — X(@)= 2 X1, (@

simple function with codomain elementary function with codomain
Q, ={x, eRk=1...,nfcR Q, ={x, eRk=1..}cR
\ simple random quantity elementary random quantity /

Either case X (W) takes valueson €2y = {Xl, X, ,} finite or denumerable set
real

with probabilities P, Poif —> P(X =x )= p, { nonnegative
| | 17
Z p, =1
. Yk




X(w):weQ —>R

Continuous random guantity (Q, B, Q) > (R,B.,P)

Q, R uncountable set — Ac Q, - P(X € A)=[dP(x) = [1, (x)dP(x)
A R

P X(w) absolute continuous: Radon-Nikodym Theorem (1913, 1930)
/ If conditions (*; see notes) satisfied: \

= p(X) unique (if g(x) has same propertiesas p(x) ==» u{x| p(x) = g(x)}=0)
A-Iintegrable (in fact Riemann integrable )
non-negative a.e. (P(X)>=0 ae)
bounded on any bounded interval of R (< if 3 p(w) then P << 1)

suchthat . P(X € A) = [1,(x)dP(x) = [dP(x) =[ p(x)dx

Won density... Probability Density Function p(X|€) =...x1, (X) = J p(x)dx :y

» X (w) singular

(*): P o-finite measure over the measurable space (R, B)

If P~ A4 (equivalent: v<<A and A<<v ) 18
v << u absolute continuous: u#(A)=0=v(A)=0 VAeB



EXAMPLE. ‘ Random Quantity: Continuous, discrete...

depends on the codomain of X(w):weQ — X(w)eR

M \g 3
Z =cos® Z~p(z|a)=§(1+22)+az

Q, =[-11]=[-10)U[01] =0, UQ, Q,NQ,=0

X(w):weQ—> X(w)eR 1
X(Q)=-1 (to all we@) | p(x(w)= j o(w| a)dw_—(1+ a) 0

Last, remember that: (see notes for demonstrations)

e The set of points of R with finite probabilities W = {vX eR |P(x) > 0} IS countable

o ZP(Xi) =] = IfQis o ordenumerable, itis not possible for all the points
i to have the same probability

o If XisAC —> A([a])=0 —> P(X=a)=0 but{X=a}is notan impossible result

P(impossible event)=0 but P(event)=0 A? event is impossible
19



2) THE DISTRIBUTION
FUNCTION

20



Distribution Function

Def. (gen.): One-dimensional DF VF:xeQ, c R—> R such that:

1) Continuous on the right:

2) Monotonically non-decreasing:

3) Limits:

'_F(x +&)=F(X)

lim  F(x+¢&)=F(x) ; ¥xeR

0"

If x,X, eR
and X, <X,

lim__ F()=0 ; lim

X—>+00

}—> F(x) < F(X;)

F(x)=1

F(x+0") =F(x)
F(—0)=0
F(+0) =1

21



Distribution Function of a Random Quantity X (W)

Def.- DF associated to the Random Quantity X is the function

F(X)=P(X <x)=P(X e(-o,x]) ; ¥xeR

Bl For each DF there exists a unique probability measure defined over
Borel Sets that assigns the probability F(x,)-F(x,) to each half-
open interval (x,,x,|eR

B Reciprocally, to each probability measure defined on the measurable
space (€, B) , corresponds a DF

Distribution Probability
Function Measure

B The Distribution Function of a Random Quantity has all the information

needed to describe the properties of the random process for a given model.
22



Some General Properties of the DF From definition

(see notes for demonstrations)
VX eR
F(x)=P(X <x)=P(X e(-,x]) P(X <x)=F(x—¢)

P(X >x)=1-P(X <x)=1-F(x) P(x, < X <x,)=P(X e(x,,%,])=F(x,)-F(x) ...

B» | DF defined Vx e R
If X takesvaluesin [ab]leR p(x|8) =..x1;,;(X) and F(x):{

0 Vx<a
1 Vx>b

B | Set of points of discontinuity of the DF D ={vxeR/F(x-¢) = F(x+¢)]
Is finite or countable

F(+0) =1 )| At each point of discontinuity,

____---———“f"" F(X) has a jump of amplitude P(X =X)

Foo |
?_F2x+g)=|=(x) P(x £<X <X)= P(X e(x-&x)=F(x-¢)-F(x)
e S M— LA

23



_ discrete . :
Random Quantity > Distribution Function

. continuous
(Q,B,Q)X(W)'Q”z: (R,BR’P) singular or

absolutely continuous

Discrete Random Quantity X (W) |Codomain Q, < R is finite or countable set

X (W) takesvalues Q, = {Xl,xz,...}

with probabilities  {Py, Pyl —> P(X =x)=p. .

— Distribution Function:

real

non-negative

Zpk:]'
- W

F(X)=P(X =X) = Z Pl oo (X)) F(-0)=0 :
vk -

F(+0) =1

1) Step-wise and monotonous non-decreasing

2) Constant everywhere but on points of discontinuity where it has a jump

F(x)-F(x -£)=P(X=x)=p,

24




EXAMPLE! | Poisson Distribution: Po(x||)

0.4

0.3

0.2

0.35

Py

045

0.05

| T T N

11

Q, =1{012,..}

k

Y7,
T(k +1)

p, =P(X =k)=¢e""*

F(x)=P(X <x)= Z P L (%)

F(-0)=0 ; F(+w)=1

%)

25



Continuous Random Quantity X (W) Codomain Q, c R isa

non-denumerable set

q = (X) Continuous on the right: F(x+¢&)=F(x)
Jump of amplitude P(x) at discontinuity: F(x-¢)=F(x)-P(X =X) = F(x)

continuous everywhere in R =0

A A

ﬂ AC: (... Radon-Nikodym: P(A) = [dP = jg—zcm — t
l A

A
-~ )

Distribution Function: F(X) =P(X < x) = _[p(t)dt F(-0)=0 ; F(+0)=1

—00

Probability Density Function (pdf):  p(x) = @ unique a.e.
X

1) p(x)20 ; ae.inR
2) bounded in every bounded interval of R and Riemann integrable on it

3) | p(x)dx =1 p(x[0) =...x1q, (X) 26




EXAMPLE: o
Cauchy Distribution: Ca(x|0,1)

p(x) """"" Iy i 1 1

p(X) — T 1+ X2 1(—00,00) (X)

0.25

0.2

0.05|-

F(X) = _[p(u)du _%+iarctan(x)

27



General Distribution Function (Lebesgue Decomposition) ‘

F () :'NZD:ai F°(x) + ibj F (x) +§:ak F> (x)

|\ ~ J — —
Discrete Abs. continuous Singular
Step Function X _
(simple or elementary) F(X)= j p(u)du F(x)  continuous
with denun_1erab|e number i r '(X) _ [ almost
of jumps p(x) = F '(X) everywhere
P(X =x) almost everywhere
1 oy
Y P(X =x,)=1 pdf: p(x)] jp(x)dx:l

-0

(Poisson, Binomial,...) (Normal, Gamma,...) | (Dirac, Cantor,...)
28




Some Distributions that we shall use frequently:

Discrete Distributions

s .
Po(x|u)=¢"" [(xt D) 1y, (x) Poisson o PO(K(3)
,Ll = I:a>0 0;2' ‘
.
: n : : -
Bi(x|n,0) =( j 0" (1-0)"" 1\ rpon (X) Binomial
X o Bi(x|10,0.3)

Bernoulli %
fe(0l)cR neN, of ‘

Brn(x | 8) = Bi(x |1, 6)

44444444

n! k-1 (1_kilxj ) k-1
+ Mn(x]|n,0) = |(1_281) R A
X i1

l... "
Xl- k- le




Absolute Continuous

Ga(x|a,b) =C(a,b) e™x"* 14, (X)

abeR, »y(x|v)=Ga(x|1/2,vI2)
Ex(x|a)=Ga(x|a))

Be(x|a,b) =C(a,b) x**(1-x)*" 1,5, (X)
a,beR, Un(x]|01) =Be(x|1l)

N(x] #,0°)=C(o) exp{— (XZ_ l:) }1(00,00) ()
ueR ¢

ceR,

St(x| w, A,v) =C(4,v) (1+1V_1(X—,u)2)_(v+l)/2

peR Ca(x| u,A) = St(x| u, A1)
/l,V € R>0

1(—00,00) (X)

ab

" T(b)

Gamma
Chi2
Exponential

C(a,b)

_ T(a+h)
" T(a)(b)

C(a,b)

Beta
Uniform

C(o) = (27{0‘2 )_1/2

Normal

CaV==rT

Student
Cauchy

...+ Multivariate Normal, Pareto, Dirichlet, ...

_T((v+1)/2)

Ga(x|2,3)
Ga(x|1,1)
Ga(x|1.5,5.5)

|

Be(x|2,5)

Be(x|1/2,1/2) -

Be(X|6’3/2) B S R - T A TR T

N(4,12)

N(x|0,1)

N(x|-2,372 |

1 1/2
)

St(x|0,1,1) ¢
St(x]0,2,5) ¢

St(x|0,1,5) e




3) CONDITIONAL PROBABILITY and
BAYES THEOREM

Two consecutive extractions without replacement:
What is the probability to get a red ball in the second extraction?
1) I do not know the outcome of the first : P(r)=1/2
2) It was black: P(r)=2/3

Given a probability space (Q,B,P)

e The probability assigned to an event A € B

(degree of credibility we have on the occurrence of...) depends
on the information we have

=P All probabilities are conditional 31




Conditional Probability Consider (€,B,,P)
Statistical Independence and two not disjoint sets

ABcB, [ANB=0
Q=BUB"

.

P(A)=P(ANQ) = P(ANB)+P(ANB")

(- Y’ 2 _—

Probability to happen Aa;d B Aangnot B
=P(AB)+P(A B°)
Notation: P(ANBNCN..)=P(AB,C,..)

What is the probability for A to happen P(A) restricted to B

if we know that B has already occurred? Q
= P(AB) qv,

P(AB) =CxP(ANB)
P(B|B)=1=CxP(BNB)=CxP(B)

P(A, B)
P(B)
C_l = P(B) P(B) +0 (Kolmogorov,...) 32

P(AB) =




Statistical Independence

P(A,B) = P(A|B)P(B) = P(A)P(B)

‘ P(AB)=P(A) The occurrence of Adoes not depend on B
That B has already happened does not change the probability of occurrence of A

P(AB) = P(A) —— Correlation { +: P(AB)>P(A)
—: P(AB)<P(A)

B Generalization: P(ALA,...,A)=P(A|A,,...,A)P(A,,....A)=
= P(AI‘AZ,...,An) P(AZ‘AS,...,An)mP(An)

n! possible arrangements

‘ For a finite collection of n events A= {A, A,..., Ah}c B independendence
iff for each subset {Ap ,,,,, An}c A —— P(A,,....A))=P(A)---P(A,)

‘ ... Conditional independence

P(AB)=P(A) —— Ain “unconditionally” independent of B ...
It could happen that A dependson B through C P(A, B|C) = P(AIC)P(B|C)

Statistical Independence = Th. Total Probability and Bayes Th. ... 33



Bayes Theorem |

P(AB)-P(B)
P(A)

P(A,B) = P(A‘ B)-P(B) = P(B‘A)- P(A) =» P(B|A) =

We shall use that extensively + interpretations/applications in Lecture 3
EXERCISE: Cause(hypothesis)-effect interpretation

Theorem of Total Probability

Partition of the Sample Space {B ,k =1,...n}

o-UB, B NB,=0

n

P(A) = P(ANQ) = P(AH{L”J Bk}) =P(U{ANB, ) = ip(m B,) = iP(A\Bk) P(B,)

P(A)= Y P(AB,) =Y P(AIB) P(B)

Theorem of Total Probability with

Conditional Probabilities  P(A,B,C) — P(AB) = > P(AC,B)-P(C|B) Y
C




Exercise + Problem:

Cause(hypothesis)-effect interpretation of Bayes Theorem

Event A and partition of hypothesis space {Hk,k =1,...n}

Probability of occurrence of Probability of occurrence of the event H; “a priori”,
event A having occurred H. before we know if event A has occurred or not
P(H.|A) = P(A‘Hi) P(H;) normalization
PIA) 1o iay = S pa HL) = S PCAH, ) P(H
/ i:].,...n ()—kz_ll (A, k)_kz_ll (| k) ( k)

Probability (“a posteriori”) fo event H; to happen having observed the occurrence
of event (efect) A
Probability that H, be the cause (hypothesis) of the observed effect A

+ general hypothesis (H,) (all probabilities are conditional to...)
P(e|*) > P(e]|*Hy) P(e) > P(e[H,) 3



Problem: (sic, healty) < (positrons, protons)...

1) Incidence of a rare disease is 1 every 10,000 people

2) There Is a test such that

If a person is sic, gives + in 99% of the cases
If a person is healty, test may fail (false positive) and give + in 0.5% of the cases

Hypothesis: H,: be sick H, =H;: be healthy
Test: T: give positive T°: give negative
Conditional Probabilities:  P(T |H,) =0.005 P(T|H,)=0.99

3) A person is chosen at random (H,) and gives positive

@ “The probability of giving positive being healthy is P(T\H,)=0.5%,
very small” (p-value)

Correct statement, ... but interpretation... and in any case is not what we are interested in.
Find: [P(H,|T)]  (P(HSIT) 5 P(H,|T®))
(ROC curves,... P(A|B) as function of P(H,),... 36




n-dimensional random quantity X ={X,, X,,..., X}

Marginal and Conditional Densities ‘

F (X, %) = P(X, <%, X, <x,) = [dw, [ p(w,,w,)dw,

— DX, X,)

Joint p.d.f.
Marginal p.d.f. X~ p(%)= [p06X)d, X, = p(x,) = TP(Xl,Xz)dxl
Definition (pragmatic): (X, %,) _ P(X, %;)
Conditional p.d.f. P(X, [ %)= p(x,) POaIX,): pP(x,)
(p(x) = 0)
p(x Xy ) = POy ) p(x;) = p(x[x)p(x,)

Independent: — p(X, |X,) = p(X,)

—> (X, X;) = P(X) P(Xy)

37




4) STOCHASTIC
CHARACTERISTICS

“...when you cannot express it in numbers,

your knowledge is of a meagre and unsatisfactory kind.”
(Lord W.T. Kelvin)

38



Mathematical Expectation ‘ We know already that:

X (w) Discrete r.q. Absolute Continuous r.q
takes values Qy =X, %0 Q, cR
with probabilities  P(X = x,) = p, F(X)=P(X <) = [ pt)ct
where P; : real, non-negative p(x) = dI;)((x) >0 Sro'lod unique a.e.
Y b =1 J pOdx=1
vk %

Def.- Math. Expectation of r.g. Y = g[X (®)] :
Zg(xk)P(X =X) :Zg(xk) Py

k

E[Y]=E[g(X)]:= [ g[X ()]dP(e) =

[ 900dF (x) = [ (0 p(x)dx
(Z(_)I ) R R

39



Moments (wrt origin) o = E[X"]= jx” p(x)dx
: X"p() € L,(R)

a,=1 3Je,—>3a,, Ba,—>Ba,, If3Ia, then «a, 20

Mean: |u

a; = E[X]= [ xp(x)dx

» Linear operator X =c¢, +Zc — E[X]=c, +Zc E[X.]
eR

> {X.}., independent X :HXi —_— E[X]:HE[Xi]

Moments wrt point ¢ € R E[(X —¢)"]= [ (x—¢)" p(x)dx

N E[(X - C) ] C=u ) . Moments Wrt Mean g




Moments wrt Mean x, = E[(X - )"] = j(x—y)” 0(x)dx
R

Variance: o2 =V[X]=E[(X - x)?]= j(x—y)2 p(x)dx (> 0)

» NOT Linear Y=c,+¢,X —= V[Y]=0y =¢/0;

C, R
Cauchy-Schwarz
H H : . .
Skewness: 7y, = 33/2 = z Kurtosis: 7, = ,u42 = ’uj inequality
Ha © Ho o © 7, 214y

— Watch!Y —x"p(x) e L (R)

Cauchy p(x) =

Poisson P(X =k)=e™ “I P(X =) =—— r(l+x%)
k=012, k! 7N °
a _ixnp(x_k)_e—yiknﬂ_ n=12,... ENX p(x)|dx<+0  n>1
n k=0 k=0 k! —® N tg( -~
et _ k. > 0] mO’n‘],en NO Mean,
lim| 22| = Jim 1(1+1j =0 Eak B E[X ]’ k21 no~variance,...)
e gy | koL Kk (Cauchy PV for n=1

Abs. Conv. - E| a . T. Distributions: Sobolev, SchwaIAf'Z ..)




Global Picture

T Peaked: Kurtosis 7, =% = O
i , (...tails too) u,” o Extended: >0
- ext — 0 Normal
it 7, =1,-3 =0
: <0
0.6— \
- Dispersion: Variance
oal} ; [~ 0 Right
Mq_ Asymmetry: Skewness y, = ’u—i4 =0 Symmetric
- & (...tails too) o <0 Left
: u
0 1 I X I 2 |3 -tll I 5 I G 7 8
Xo "m U

Position: Mean: ux=E[X], ... Mode: X, =SUp,.., P(X)
Median: F(x,)=P(X <Xx,)=1/2

7,>0 Mode > Median > Mean
quantile: F(x, )=P(X<X,)=q,

7, <0 Mode < Median < Mean
42



X={X,}, Covariance (and “Linear Correlation”)

VIXy, X, 1= BN, = i )(X, = )] = E[X X, ] = gty P, ::V[Xl’XZ]

0,0,

Cauchy-Schwarz inequality:

{X,, X,} independent ; é V[X,,X,]=0

<
E[X, X, 1= wmu, |,012 |_1
— Covariance Matrix ~ . Correlation Matrix
2 I I
o) 0,0, ... P00,
1 p12 21 2 101 1 : 1 ,012 pln :
0.0 0} 0,0
Z:[Zij]EV[Xi,Xj]: P12.1 2 : | :02n.2 N : pp 1 py :
| p: . . . . |
2 | ' |
- plnalan pZnGZGn Gn :_ pln p2n ]_ :
Symmetric 2” :2“ ————————————
i t n V[XHX]
Non-negative X Xx>0 VXeR p; = )
00
— EXxercise:
Linear relation: X, =aX, + b —— P12 = +1 43
—2u

Quadratic: X, =a+CX12 — ,01220 if for X, is ;/1:7




The “error propagation” rule... \

Useful but to be used with care!!

V=90, X500 X)) = 9(X)

—> ¥ = g(X) = g(u)+i{§f} (%, - ) +O(D2)

=1 i

Taylor Expansion around E(X.)=p.

E[Y]= E[g(X)] = g(1) + O(D]) s Y—E[Y]:Zn:[s)ﬂ (%, - 1) +0(D})

b dp

V1= E|(Y —EY]Y = 02 »
e

OX, OX,

2
Y } V[X,]+ 2{6989} VIX,X,]+...
(14, 14)

| 0X,

- T2 2
_| %9 (,z{@g
o 1

(p1,12)

(p1,12)

o, + 2{ } 0,0,0p + ...
6X2:| axl 5X2 (p,12)

(mind for the remainder...)

(do moments exist??)

— EXxercise:
1) X, X, indep X =X,X, Compare V[X] with V[X]
2) X, ~N(X| ,0.); 4 #0 X = X,X;* Thinkabout V,,[X] 44




5) ORDERED STATISTICS (see section 6 of the notes)

6) INTEGRAL TRANSFORMS

Fourier Transform Mellin Transform

(Laplace)

D(t) = Iem f (x)dx M(f;s) ij f (x)x*dx
teR - seAcC O

f:R>C felL(R) f:R" >C f el (R")
X=X +X,%... X=X X,...; X X, ...

(see back-up slides

Moments of a Distribution

and notes for details+ useful examples/relations) 45



/) LIMIT THEOREMS
and
CONVERGENCE

46



General Problem: Find the limit behaviour of a sequence of

random quantities
Example:

» X, + X 1< How is Z . distributed
{Xk}kzl — {21 = le Zz =— : preey Zn :_Zxkv--} n

N when n>>(— ©) ?

~“distance” — convergence criteria

1) More or less strong convergence
2) May have convergence for some criteria and not for others

Convergence in:

L Central Limit Theorem
Distribution > _ _
1 Glivenko-Cantelli Theorem (weak)
Probability N Weak Law of Large Numbers
Almost Sure > Strong Law of Large Numbers
L,(R) Norm > Convergence in Quadratic Mean
Uniform > Glivenko-Cantelli Theorem
Logarithmic Convergence 4




Chebyshev Theorem |

P(9(x)> k)< S0 o(1 2 k)2

O, =0Jo, o=XgX)<kj Q,={XgX)2k]
Y=g(X)20  E[¥]= [g(x)dF(x)+ [g(x)dF(x)

-

9(620 g(;()zk
>0 > [kdF(x) =kP(X € Q,)=kP(g(X) = k)

Q,

Bienaymeé-Chebyshev Inequality

X with finite mean and variance (y X0 2)

§(X) = (X - )’ - P(x - u[2ko)s

48



'Convergence in Probability | Consider the sequence {X,, X, X . ...}

(Def: {X, . converges in probabilityto X if, and only if A
lim,,, P(X,(X)-X|>£)=0 ;Ve&>0 lim (Prob)
(real P{meer) n dimensions :| e |—> H‘J/

Weak Law of Large Numbers (J. Bernouilli...)

Let {Xi }Zl be a sequence of independent r.g. with the same Distribution Function
and firstorder moment E[X.]= u

X, + X L . .
The sequence {Zl =X,,Z, :g,...,zn :EZXK,..} converges in Probability to u

2 N2
lim,,, P(Z,-1>¢)=0 ;ve>0

- i itv i =42
LLN in practice:... Problem: show this from Chebyshev Inequality if V[X; ]=¢

WLLN: When n is very large, the probability that Z differs from g by a small amount
Is very small = Z_ gets more and more concentrated around the real number u

But “very small “is not zero: it may happen that for some k>n, Z, differs from u by
more than ¢ ... 49



Convergence Almost Sure |  Consider the sequence {X;, X,,..., X, ...}

B _ _ )
Def. {X , }n:l Converges “almost sure” 10 X if, and only if
P(Iimn%\xn(x)—x\z(e):o Ve >0 Prob (lim)

J
—\I—}Strong Law of Large Numbers (E.Borel, A.N. Kolmogorov,...) -

Let {Xi }il be a sequence of independent r.g. with the same Distribution Function
and firstorder moment E[X.]=

X, + X L :
The sequence {zlle,zzz 1F 2,,,,,zn:EZXk,..} converges in Almost Sure to 1

2 nig

P(lim,, P(Z,-4>¢)=0 ;V¥e>0

LLN in practice:...

WLLN: When n is very large, the probability that Z, differs from u by a small amount
Is very small = Z_ gets more and more concentrated around the real number u

But “very small “is not zero: it may happen that for some k>n, Z, differs from u by
more than ¢ ...

SLLN: as n grows, the probability for this to happen tends to zero 50



Convergence In Distribution ‘Consider the sequence {X,, X, .., X ...}
and their corresponding DF’s: {F, (X)), F,(X,),.... F. (X.),...}

Def.: Ther.q. X tendsto be distributedas X ~ F(x) if, and only if\

im __F(X)=F(x) < lim__P(X <x)=P(X<x) ;VxeC(F)

N—ow

or, equivalently, [im ¢ (Xx)=¢(x) ;VteR y
d Convergence in Distribution determined only by DF
—— - RQ do not have to have same support
Central Limit Theorem 0 PP
(Lindberg-Levy,...)

1) Sequence of independent r.q. {Xi }

o same distribution
i=1 | finite mean and variance (y,az)

X, + X,

2) Form the sequence {Zl = X,,Z, = ooy L, = 1ZXK,...}

N

1 1, )\| standardized:
In the limit n — oo Zn:—ZXk~N(Z|y,an ) ~  Z, -u
| e} Zy = ontz N(Z‘O’l)

) ) 1
Problem: show this from  lim___ @ (t) X ~ N(X| p,0) —> o(t) = exp{lt,u —Eo-ztz}Sl



Example

(CLT: Watch for conditions of applicability!!):

Unifom DF ™

1 n 250
Z,==> X,

r] k=1 0

1000

Y]

2000

st At P
n=1
1
0 0.5 1
n=>5 3
0 0.5 1
n=20 5
0 0.5 1

1000

500

0

2000

1000

4000

2000

- 2
N=2

0 0.5

- n=10 4

0 0.5

'n=50 6

0 0.5
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Parabolic DF

] 1000
Zn :_2 ‘,Xk
) ey
1000
0
2000
1000

1

1

I
o1

N

1000

1000

4000

2000

n=50

53



Cauchy DF

1 n 2000
Zn —_ — E Xk
N =
0
2000
0

2000

=
[
| —

-10 0 10

-10 0 10

2000

2000

2000

N=2

-10 10

n=10
-10 10
10

54



Uniform Convergence f.f:S>R

Def.: The sequence { f, (x)}”_converges uniformly tof (x) if, and only if

lim,, sup, |f,(xX)— f(x)| =0
9 vXeS

<I—> Glivenko-Cantelli Theorem

J

experiment e(1) one observation of X - 1%}
e(n) independent, identically distributed X0 X e Xy e

Empiric Distribution Function

18 number of values x; lower or equal to x
F. (X) = o Zl(—oo,x] (X) [ . ]
k=1

. )
If observations are iid: lim__ P(supX\Fn (X) — F(x)\ > g): 0

The Empiric Distribution Function converges uniformly
g to the Distribution Function F(X) of the r.g. X )

\J\J




Example | X, ~Un(x|0,)

1

1

X=X X, =~ E|:1(0,1) (X)+ =510 (X)} -Un(x]0.1) + Pa(x|11)

X2

(show that from Mellin Transform)

X X No moments E[x"]; n>1
F(x) = 51(0,1] (x) + (l_ Ejl(l,oo) (X) [x']

... Bootstrap in
Monte Carlo




4 )

End of

Lecture 1...
N Y,

Backup slides: Notes on Integral Transforms
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6) INTEGRAL TRANSFORMS
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“Fourier” Transform... (Characteristic Function)

( Ixt t R
f:R->C fEL1(R) (D(t):_.[oe el (D?'[ER—)C

Probability Density... Inversion Theorem (Levy,1925)

ixt B 1 % i
O(t) = E[e™] p(X) _Z_Le D (t)dt
Properties: ]
> O(0)=1 Discrete: p(X :Xk)zi_je—itxkq)(t)dt
» bounded [D(t) <1 :
» Schwarz symmetry  @(t) = @ (-t) Reticular: X, =a+bn 2:; R, b=0
» Uniformly continuous in R p *ib

p(X =X, ) = j e ™ @(t)dt

- /b

Ve>0,36]|0(t+6)-0(t) < e
(all necessary but not sufficient)

» One-to-one correspondence between DF and CF

» Two DF with same CF are the same a.e. 59



Useful Relations:

b Y=g(X) > O,1)=E["]=E["] = [e*"p(x)dx
Y =a+bX . (t) =e™ 0, (bt)
abeR
i are n independent random quantities

X=X 4+ X, wmpp

X=X -X, —

D, (t) = E[e"™ ™=@, (t) - @,(1)
D, (1) =D, (H)D,(-1) = (Dl(t)62 (t)

P If distribution of X is symmetric: &, (t)=d_, ()=, (-t) =D, (1)

then (Dx(t) is a real function



Example  X. ~ Po(n, |,ui)_ = expf—ps (L")}

0 it \ X

(Di(t):eﬂ'zg(lie )1)

- X+

X=X,-X, Q,=1 =

O, (t) = q)l(t)EZ (t) = g ) eXp{ﬂleit + :uze_it}

X: Discrete reticular: a=0, b=1

nl/2 W
T U O - G O
oo
21 * °

My
A 1/2 1/2
il ye it . Hq )
s 7= 2L | e C: Z:(—J ,96(—72’,72’]}
I/ \\ (HZJ {‘ ‘ He
( O - Il> Pole of order n+1 at z=0
\ / 2 ()"
I B Rest 1(2),2=00= 2 - o o
X, ~ Po(x|2) p=0 - (P ¥

n/2
P(X =n) = [ij e (2usty)
H

HH HN X, ~ Po(x|5)
.MTDHH.S .DHﬂn; A S| 61




Some Useful Cases for the Sum of Random Quantities:

X=X ++X

Xy ~ Po(x | 44) X ~Po(x| ) Hs =ty T T

U = et

Xy ~ N(x, [ 4.04) X~ N(X| yg,0%) 0'32:012+"'+O'2

X, ~Ca(x |a.b) X ~Ca(x|a,,b,) ds =&+t 4,
b =b, +---+Db

X, ~Ga(x, |a,b) X ~Ga(x|a,bg) b, =b, ++--+h




Moments of a Distribution

(Fourier / Laplace Transforms usually called “moment generating functions”)

o0 =El"] — Enx1-cir| S0

Example

t=0

05 8"

(D(tl,...,tn) _ E[ei(X1t1+...+X1tn)] — E[Xiki X ;<j ] _ (_i)ki+kj [aklt akjt (D(tl ..... tn):l
| J )ty =0

X
X ~Cs(0l) X=>] x

................................................

supp[X,1={02}  P(X,=0)="P(X :2):%
F(X)=P(X <X) = du

0, (t)= E[eiXt]:%(1+e2“) — (D, (1) =e"'? ﬁcos(t/3”)

D)= 1 _1
®Y(0)=- - E[X]=]

CDZ)(O):_S N E[xz]zg N



Mellin Transform f:R" >C feL(R")

M (f:s) = j f (x)x*tdx | o
) f(X)=— jM(f,s)x-Sds
2721 o—loo
Obviously, if exists ... S € A C C ‘
/ Convergence of integral
. -1 ' :
Probability Densities... M(f;s)=E[X S ] Strip of holomorphy
1 _ <—-a,—f>
lim f (X) _ O(Xa) | M (f ;S) |§ Clj’XRe(s)—lde_l_CZJ'XRe(s)—lJrﬂdX
x—0" 0

1 Im
lim f(x)=0(x")  -a <Re(s) < - "

L ) : i | Re
f(x)=e" f,(x)=e"-1 ] —:ﬂ >
same M(f,,;s)=T(s) Re(o) e<—a,—f > : |
< 0,00 > <-10> Ly
T: i R
A M (f:5)8 <-a,-f>
| | ¥ 64




Useful Relations:

J‘ys—ldp(y) :as—lij(s—l)dp(x)
» [y =ax®’ . M, (s)=a"*M, (bs—b+1)

abeR, a>0

a=Lb=-1 |Y=X" — M,(s)=M, (2-5)

» {X. ~p(x)}, Independent and non- negative  X; € [0, )

X=XX,X]| = M,(s)=Mys)--M,(s)

n

X =X,X;! - M, (S)=M,(s)M,(2-5)

moments too: M, (s)=E[X*]>M, 1) =1, M, (n+1)=E[X"]

X = XX, Mx(s):ﬁx”p(x)dx ® b= p,(W)p,(x/w) ylwldw}ml(swz(s) ”



Example X. ~Ga(x |a;,b.) X =X,X,

e, ~Caly 18) b 9= T M, )= - D
== _ LT +2-) T, +2-1)
K i My (2) =My, (M, (2) = (a,3,) o) o)

/

o-o’-o—o—o-o-o—a—|—>

\ Without loss of generality, assume b, > b,

Strip of holomorphy <1-h 00 >

~
o

@]
|
~
— J real

(2,3,) T (b, )(b,) p(x) = zimcﬁalazxrzr(bl + 2= (b, +2-1)dz

C—ioo

2 b o b V2
p(x): al a'2 [aZJ X(b1+b2)/2—1KV(2 /alazx)

F(bl)r(bZ) a v=Dh,-b >0 X = X1X2_1

4 Db +b) aa,x""

Be careful with strips and integrals! ... X =XX,

(see Notes for more examples)

C(b)T(b) (2, +2,)* ™
X; ~ Ex(x | &) =Ga(x | a;,1) 66




Example
X. ~Un(x |01)

Be careful with strips and integrals ...

1 converge for

0 . XS
My () = [ X" 15 (X)dx =
0

1
"5 s>0 - <0,0>

0

[e¢]

s-2

_OO s—1 -2 _y 1
Mszl(s)—ly Taamy (VY 7dy =2— = —— s<2 5 <02>

1

- 1 Strip of holomorph
— |7 =X, X, M, (s)=M, (s)M_.(s) = P phy

Different Bromwich Contours for x>1 and x<1:

A A
~T"1 |
e : c>0 R
/ I real : \
/ I I \
| ® } ) > ® - ® ‘, >
0 : 2 Of a 2,
l /
\\ I I /
Y _-"

hx<0- x<1 hx>0- x>1



1

X = X1X2_1 ~ El:l(O,l)(X)+71(1,oo)(X):| 1/2

1

Un(x|01)+ Pa(x|1,1)

o0

M (p;s) :J- p(x)x*dx

\ 0

1

Mx(s): 5(2-59)

M (p;n+1):]o p(X)x"dx ——— | E[X"]=M, (n+1)

X. ~Un(x |0.1)

— (7 = X, X,

X

n

7z =0 poleofordern

]

1

" (n+1)1-n)

=P NO moments for n>1

1
|\/lz(S)=S—n <0,0 >

=X Ry XKy = = h00)™ Loy (X)

" I'(n)




What if supp{ p(x)}=R?

M (f:s) = [ f(x)x*dx f:@% f eL,(RY)

0

Partition of supp{ p, (x)}xsupp{ p, (x)}

and change {z, =+x, ;z, =+x,} sothatsupportsareon R"

Example:
SR TR EY P
X, ~N(x,]0,0,) a=(o,0,)
X =X, X, X =X, X,
obviously...  p(X)= j p(w, xw)|w]|™* dw D(X) = .Q p(xw,w)|w|dw
) )

Q

independent... p(x):jpl(w)pz(xlw)%\mdw p(x):: D, (XW) p, (W) |w|dw

MT: usually more involved but... we have the moments with same effort 69



| Example: Ratio of Normal and »? Distributed r.q. ‘

X, ~ N(x | 0J)

X, ~;(2(x2|n)

supp(X,) =R

supp(X,)=R"

X =X,(X,/n)™

» Z=(X,/n)™"*

sz(s):

2°'T(n/2+5s-1)

\

> X, ~ N(x, [0])

M1+ (S) —

r(n/i2)

(s-1)/2
> M, (s) = NCETY . ((3_ S)/2) _ (2) F((n +1- s)/2)

r(n/2)
O<Re(s) <n+1

p(x,) :¥p(X1)1[o,oo) (Xi) T E(Xl)l(—oo,O) (X1J)

2°'°T(s/2)

227 0 < Re(s)

P, (%)

p; (X,)

» X ~ p(X) = p(X)l[O,oo)(X) T p(X)l(—oo,O)(X) = p*(x) T p_(%()



p"(Xx)

—>
1

-— s = =

\
\

—

/’ ’-\\
® \
|
’
®

/

/

/
I

M (s)=M; ()M, (s) =

Poles:

-—+——§+a—_*

n+1

I———D

D"

P 09= \/7r(n/2)Z

n*’r(s/2)r((n+1—s)/2)

2-/nzT(n/2)

Holomorphy: < Re(s) <n+1

Sy =

—2m ;

m=20,12,...

s, =n+1+2k; k=021.2,..

'(m+1)

() r(e5tem)-

_T((n+1)/ 2)[ j (w2

P (X)|  same (symmetry) ~ Vnzr(n/2)
X, ~N(x 0] i N 1/2 ) ((n+1)/2) X_Z _(n+1)/2 _
X2~12(x2|n)} X_Xl[xzj p(x) = MF(n/Z)[lJF n) — St(X |n)

/1




| Example: Ratio of two Normal Distributed r.q. ‘

Xi~ N(% | g,09) X =X.X,” ()= [ p, (xw) p, (w) | w | dw

_l a _i ,U12 ﬂzz \/z f(x)%/2 1/2

P(X) =~ exp{ 2(012 +0§JH1+ 1 (e erf (f(x)27%/2)
1,05 + X0y

a=o,0," f(x)=

\/1+ X°q2 MC sampling Pdf: p(x)

1) 4y =p,=0- Ca(x]0,a%)

2) Has no variance

102

Ko~ N(x [ g, =-4,0,=1)

10

Xy~ N(X, |, =4,0,=3)




