
PROBABILITY AND 

STATISTICS 
“ They say that understanding ought  to work by the rules of right reason.

These rules are, or ought to be, contained in Logic; but the actual science 

of logic is conversant at present only with things either certain, 

impossible, or entirely doubtful, none of which (fortunately) we have to 

reason on.

Therefore, the true logic of this world is the calculus of Probabilities, 

which takes account of the magnitude of the probability which is, or 

ought to be, in a reasonable man's mind”

J. Clerk MaxwellLecture 1:  Elements of Probability

Lecture 2:  Monte Carlo simulation

Lecture 3:  Bayesian Inference
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These lectures are just a “guided tour” to the Lecture Notes at:  arXiv:1610.05590v3



1)THE ELEMENTS OF 

PROBABILTY 

A. N. Kolmogorov (1933)+…

),,( PB
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INDEX of Lecture 1:

1) Elements of Probability, random quantities, probability densities, …

2) Distribution Function

3) Conditional Probability and Bayes Theorem

4) Stochastic Characteristics (mean, variance, moments,…)

5) Integral Transforms (Fourier, Mellin) 

6) Convergence (Laws of Large Numbers, Central Limit Theorem,…)



Event: Object of questions that we make about the result of the experiment such

that the possible answers are: “it occurs” or “it does not occur”

Elementary: those that can not be decomposed

in others of lesser entity

Sample Space: {Set of all the possible elementary results of a 
random experiment}

exclusive: if one happens, no other occurs

exhaustive: any possible elemental result has to be included in 

The elementary events have to be:

sure: get any result contained in      

impossible: to get a result that is not contained in      

random event: any event that is neither impossible nor sure
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elementary events:

Non-elementary events:

Sure event: Impossible event:

… but we are interested in many events (questions) other than the 

elementary ones…   

)(


3

1

121 }{



i

ieleptonsZB charged

 21}{ BBleptonsZA  … if not  what occurs is }{ hadronsZAc 
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ieleptonsZB neutral

}{1 leptonsZB charged }{2 leptonsZB neutral? ?

?

and we are  about to see that Probability is a measure on sets  so we have to 

single out  the sets we are interested in (… sets that we want to “measure”) so…

They are all sets … 



),(  B2) Measurable Space



B

: Sample Space

: Algebra Class of events closed under union and complements

We are interested in a class of events that:

1) Contains all possible results of the experiment we  are interested in

2) Is closed under union and  complementation
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Why  algebra        ?        
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cccc

1) has all the elementary events
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So now we have:
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2)          has all the events we are interested in





We can construct several possible algebras:
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Minimal:
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Interest in decay type:

(power set          ) 
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More General Structures of the algebra…



has the structure of Boole algebra )dim( finite
B

BStructure of algebra
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)dim(

Finite

drawing a die

Denumerable 

throw a coin and stop when we get head

 654321 ,,,,, eeeeee

 ,,,, ttthtththh

Non-denumerable

decay time of a  particle
  Rt

Dimension of  Sample Space

(1)



Generalize the Boole algebra such that          and          can be performed

infinite number of times resulting on events of the same class (closed)
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denumerable

has structure of σ-algebra

All -algebras are Boole algebras but not all Boole algebras are -algebras
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(2)



so… What about ?

Certainly is an algebra but …

As we shall see,  we are interested in
nR

linear set of points

Among its possible subsets 

are the  intervals
    

points 

(degenerated interval)

   aaa ,
  ,R

Any collection of intervals, 

denumerable or not,

is a subset of R

 finite or denumerable of 
intervals is an interval 

Which are the “basic” events to construct a useful algebra (for us)?

      0,,,  aaaaaa

)dim( non-denumerable

:R

…but…

Nice sets but… a collection of intervals is a σ-algebra ?



not intervals  (in general)
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Generate a σ-algebra

for instance, from… half open intervals on the right
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Contains all half-open intervals on the right

2) Form the set Ω1 by adding their countable unions and complements

It has all intervals and points …

among other elements

Its elements are Borel sets (borelians)

3) Add sets to close under countable union and complementation
There is at least one σ-algebra containing Ω1 

1) Initial Set (Ω0):

RBQZN ,, ],[),,(],,( bababaMay start as well with

[a,b)
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[a,b)

…

[a,b)

…

A
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Borel σ-algebra (BR) : Smallest σ-algebra

of subsets of  R that contains intervals ([a,b),…) 
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Measure:

ii) -additive

),,(  B3) Measure Space



















11

)(
i

i

i

i AA    0;
1,

1









 
ji

ji

jiii AAA

),0[)(:   ABA iii) Non-negative

►Measure Space ),,(  B

For any countable sequence  of disjoint sets of

RBA  :i) Set function (one and only one real number)

“signed measure” on σ-algebra 

B

B

… measure

11Two important measures



● All Borel Sets of Rn are Lebesgue Measurable

1)( 

Probability Measure

),,( PB►Probability Space

P(notation             ) 

● Any bounded measure can be converted in a probability measure

  RBA   1,0:

(certainty) 

1)]1,0([  nLebesgue Measure in Rn Translation invariant 

1221 ]),([ xxxx ),,( BR n
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● There are non-denumerable subsets of R with zero Lebesgue measure  

● Not all subsets of R are Lebesgue measurable                       (←Axiom of Choice)

● Lebesgue measurable sets (C) not in B (λ(AϵBR\C)=0)

σ-additive 

...)),([ 21  xx
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From ii) (σ-additivity for disjoint sets):

Properties of measure…        eventually properties of probability
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EXAMPLE: ffZ   cAAB ,,0, }{ leptonsZA  }{ hadronsZAc 

1)(  (certainty) 

3.0)( A

7.0)(1)(  AAc 
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  RBS   1,0:

Now we have the Probability Space                        … 

… but the results of the experiment are not necessarily numeric, expectations,…

),,( PB

Random quantities (“variables”)

Associate to each elementary event of the sample space Ω one, and

only one, real number through a function

RwXwwX  )(:)(

(misfortunately  called 
“random variable”)

Induced Space 

),(),( II

X
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),( RBR )),(()( baXPorkXPPI Interest in:

),,(),,( III PBPB 

What is random is the outcome of the experiment before it is done

X(w): Is neither random nor variable



Random quantities (2)
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),(),( R

X

BRB  But B has the events of  interest so:  

To keep the structure of the  σ-algebra B it is necessary that

(i.e. the function  X(w) be Lebesgue (…Borel) measurable) 

BAXBA R   )(1

;

is Borel measurable… wrt the σ-algebra associated to Ωwwf :)(

RwXwwX  )(:)(
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Is the function            an admissible random quantity?
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EXAMPLE: ffZ 
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In this case is simpler:
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so check that                          and 



… Types of Random Quantities… 
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Indicator function:        

 xA ;

:, BA )()()}(),(min{)( xxxxx BABABA 11111 

)()()()()}(),(max{)( xxxxxxx BABABABA 1111111 

)(1)( xx AAc 11 



Types of Random Quantities 
Finite / countable set

Codomain of
Uncountable set
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simple function with codomain
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Discrete r.q.
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Continuous r.q.

Discrete random quantity 

1
k
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 ,..., 21 xxX Either case            takes values on

with probabilities  ,..., 21 pp

real

non-negative 
ii pxXP  )(

)(wX finite or denumerable set 

Partition of  
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elementary function with codomain

  RkRxkX  ,1;

simple random quantity elementary random quantity

For all elements of Ω that belong to  Ak , 

X(w) assigns the same value xk
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finite partition of
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singular

Continuous random quantity 

 
R

A

A

X xdPxxdPAXPA )()()()( 1RX 
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A dxxpxdPxdPxAXP )()()()()( 1

)(X

)(...)|( xxp
X 1

),( BRσ-finite measure over the measurable space  P

Radon-Nikodym Theorem (1913, 1930)

~PIf                             and(equivalent :                                          )
  absolute continuous:                                                                        BAAA  00)( 

BA 

unique 

λ-integrable

non-negative  a.e.

bounded on any bounded interval of R

such that

p(x) (if          has same  properties as                                                    ))(xp)(xg   0)()(|  xgxpx

(in fact Riemann integrable )

)0)(( aexp 

  Pwp thenif )(

Radon density… Probability Density Function                          

),,( QB
RwwX :)(

),,( PBR R

uncountable set

1)( 




dxxp

If conditions (*; see notes) satisfied:  

(*):  

)(X► absolute continuous:



● If X is AC but {X=a} is not an impossible result0)(  aXP0])([ a

Last, remember that:

● The set of points of  R with finite probabilities                                      is countable

● If Ω is  ∞ or denumerable, it is not possible for all  the points 

to have the same probability 




i

ixP 1)(

 0)(  xPRxW

(see notes for demonstrations)

P(impossible event)=0    but   P(event)=0 event is impossible
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EXAMPLE:

depends on the codomain of RwXwwX  )(:)(
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Random Quantity: Continuous, discrete…
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(to  all  wϵΩ1 )
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2) THE DISTRIBUTION 

FUNCTION 
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Def. (gen.): One-dimensional DF RRxF X  :

RxxFxF 
;)()(lim
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1)(lim;0)(lim   xFxF xx
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F

F

xFxF

Distribution Function

1) Continuous on the right:

2) Monotonically non-decreasing:

3) Limits:

)(xF

x 

0)( F

1)( F

)()( xFxF  
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,
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such that:



The Distribution Function of a Random Quantity has all the information

needed to describe the properties of the random process for a given model.

 wXDistribution Function of a Random Quantity

Def.- DF associated to the Random Quantity       is the function

   RxxXPxXPxF  ;,)()(

X
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Distribution 

Function
Probability 

Measure

For each DF there exists a unique probability measure defined over

Borel Sets that assigns the probability to each half-

open interval

)()( 12 xFxF 
  Rxx 21 ,

Reciprocally, to each probability measure defined on the measurable

space , corresponds a DF),( B



Some General Properties of the DF
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DF defined Rx

Set of points of discontinuity of the DF 

is finite or countable

 )()(/   xFxFRxD

  )()()(lim
0

xXPxFxF 




   )()(,)( xFxFxxXPxXxP  

At each point of discontinuity,           

has a jump of amplitude )( xXP )( xF

)(...)|( ],[ xxp ba1
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  Rba ,XIf        takes values in and

Rx
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From definition 

(see notes for demonstrations)
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Discrete Random Quantity )(wX Codomain                   is finite or countable set

1
k

kp

 ,..., 21 xxX takes values

with probabilities  ,..., 21 pp
real

non-negative ii pxXP  )(

1)(;0)(  FF
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Distribution Function:

1) Step-wise and monotonous non-decreasing

2) Constant everywhere but on points of discontinuity where it has a jump

kkkk pxXPxFxF  )()()(  24

RX 
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Random Quantity
discrete

continuous
Distribution Function

singular or 

absolutely continuous

RwX :)(
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Poisson Distribution: Po(x|µ)
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)( xF

continuous everywhere in R

)()( xFxF  

)()()()( xFxXPxFxF  

AC:   
A AA
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dttpxXPxF )()()(

0

Distribution Function: 1)(;0)(  FF

Probability Density Function (pdf):
dx

xdF
xp

)(
)(  unique a.e.

(… Radon-Nikodym:

Continuous Random Quantity )(wX Codomain                   is a 

non-denumerable set

RX 

2) bounded in every bounded interval of and Riemann integrable on it

3)

Rineaxp ..;0)( 1)

R
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Continuous on the right:

Jump of amplitude P(x) at discontinuity:

)(...)|( xxp
X 1
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EXAMPLE:
Cauchy Distribution: Ca(x|0,1)
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General Distribution Function (Lebesgue Decomposition)
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)()()()(

Discrete Abs. continuous Singular

almost everywhere

)( xF

0)(  xF

continuous

almost 

everywhere)()( xFxp 

pdf:

(Dirac, Cantor,…)(Normal, Gamma,…)(Poisson, Binomial,…)

)( nxXP 

1)( 
n

nxXP

Step Function

(simple or elementary)

with denumerable number 

of jumps
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Discrete Distributions

Po(x|3.)

Bi(x|10,0.3)
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Some Distributions that we shall use frequently:

Poisson

Binomial

Bernoulli



N(x|4,1/2)

N(x|0,1)

N(x|-2,3/2)
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…+  Multivariate Normal, Pareto, Dirichlet, …

Ga(x|2,3)

Ga(x|1,1)

Ga(x|1.5,5.5)

St(x|0,1,1)

St(x|0,2,5)

St(x|0,1,5)

Be(x|2,5)

Be(x|1/2,1/2)

Be(x|6,3/2)

Gamma

Beta

Normal

Student

Chi2

Exponential

Uniform

Cauchy

Absolute Continuous



3) CONDITIONAL PROBABILITY and

BAYES THEOREM

Two consecutive extractions without replacement: 

What is the probability to get a red ball in the second extraction?

1) I do not know the outcome of the first : P(r)=1/2

2) It was black: P(r)=2/3

All probabilities are conditional

Given a probability space

● The probability assigned to an event 

(degree of credibility we have on the occurrence of…) depends 

on the information we have

),,( PB

BA 

31



Consider 

and two not disjoint sets

cBB 

)()()()( cBAPBAPAPAP  

 BBA, 0BA

A and B A and not B

What is the probability for A to happen 

if we know that B has already occurred?

)( BAP

)()( BAPCBAP 

)()(1)( BPCBBPCBBP  

Probability to happen

)(

),(
:)(

BP

BAP
BAP 

)(1 BPC 

Conditional Probability

Statistical Independence

),(),( cBAPBAP 

),,( PB

0)( BP (Kolmogorov,…)

Notation: ),,,()(  CBAPCBAP 
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P(A) restricted to B



A B



)()( APBAP 

)()(: APBAP 
Correlation 

Generalization:  ),,(),,(),,,( 22121 nnn AAPAAAPAAAP 

!n possible arrangements

A BThe occurrence of    does not depend on

)()(: APBAP 
)()( APBAP 

That  B has already happened does not change the probability of occurrence of A    

)(),,(),,( 3221 nnn APAAAPAAAP 

33

)()()()(),( BPAPBPBAPBAP 
Statistical Independence

)()( APBAP  A in “unconditionally” independent of  B …

)()(),( CBPCAPCBAP It could  happen that  A depends on B  through C

… Conditional independence

  BAAAA n  ,,, 21 For a finite collection of n events                                            independendence

iff for each subset )()(),,( mpmp APAPAAP    AAA mp ,,

Statistical Independence Th. Total Probability and Bayes Th. …



Theorem of Total Probability
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Partition of the Sample Space
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Theorem of Total Probability with 

Conditional Probabilities
34

B1

B2

B3
B4

B5
B6

A

Ω

)()()()(),( APABPBPBAPBAP 
)(

)()(
)(

AP

BPBAP
ABP




Bayes  Theorem

We shall use that extensively +  interpretations/applications  in Lecture 3

EXERCISE: Cause(hypothesis)-effect interpretation 



 nkHk ,1, Event A and partition of hypothesis space

)(

)()(
)(

AP

HPHAP
AHP

ii

i 

ni ,1

Probability of occurrence of the event Hi  “a priori”,

before we know if event A has occurred or not 

Probability of occurrence of

event A having occurred Hi

Probability (“a posteriori”) fo event Hi to happen having observed the occurrence

of event (efect) A

Probability that Hi be the cause (hypothesis) of the observed effect A

normalization
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)()(),()(

+ general hypothesis (H0) (all probabilities are conditional to…)

),|()|( 0HPP  )|()( 0HPP 

Cause(hypothesis)-effect interpretation of Bayes Theorem 

Exercise + Problem:



healthybeHHsickbeH c :: 121 

1) Incidence of a rare disease is 1 every 10,000 people

Hypothesis:

36

Problem:

Correct statement, ... but  interpretation… and in any case  is not what we are interested in.

2) There is a test such that 

if a person is sic, gives + in 99% of the cases                                                            

if a person is healty, test may fail (false positive) and give + in 0.5% of the cases

(sic, healty) ↔ (positrons, protons)…

3) A person is chosen at random (H0) and gives positive

“The probability of giving positive being healthy is  P(T|H2 )=0.5%, 

very small” (p-value)

negativegiveTpositivegiveT c ::Test:

99.0)|(005.0)|( 12  HTPHTPConditional Probabilities:

Find: )|( 1 THP

(ROC curves,…   P(A|B) as function of P(H1),…

 )|(;)|( 11

cc THPTHP



),( 21 xxp






 22111 ),()(~ dxxxpxpX

)()|()()|(),( 22111221 xpxxpxpxxpxxp 
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)(

),(
:)|(

1

21
12

xp

xxp
xxp 

)0)(( xp

)()|( 212 xpxxp 

)()|( 121 xpxxp 

n-dimensional random quantity
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Conditional p.d.f.   

Independent:
)()(),( 2121 xpxpxxp 

)(

),(
:)|(

2

21
21

xp

xxp
xxp 
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Joint p.d.f.

Marginal p.d.f.

Definition (pragmatic):

},...,,{ 21 nXXXX

Marginal and Conditional Densities
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4) STOCHASTIC 

CHARACTERISTICS

“…when you cannot express it in numbers, 

your knowledge is of a meagre and unsatisfactory kind.”

(Lord W.T. Kelvin)
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dPXgXgEYE )()]([:)]([][ 

Def.- Math. Expectation of r.q.                         :)]([ XgY 

Mathematical Expectation
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We know already that:

Discrete r.q.

1
k

kp

 ,..., 21 xxX takes values

with probabilities

: real, non-negative
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Moments (wrt origin)

Mean:

Linear operator
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►
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…Moments wrt Mean
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Skewness: Kurtosis:

Moments wrt Mean
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No moments (no mean, 

no variance,…)

Watch!!

Abs. Conv.
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(Cauchy PV for n=1

T. Distributions: Sobolev, Schwarz,…)
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Cauchy-Schwarz

inequality
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Rci 
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Normal

Right

Symmetric

Left

Position: Mean:              , … Mode: )(sup0 xpx x 

Median: 2/1)()(  mm xXPxF

 qxXPxF  )()(quantile:

][XE

01 

Mode < Median < Mean01 

Mode > Median > Mean
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Peaked: Kurtosis

(…tails too)

Dispersion: Variance
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Asymmetry: Skewness
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(…tails too)
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Global Picture
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Extended:
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Covariance (and “Linear Correlation” )

Linear relation: baXX  12
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Cauchy-Schwarz inequality:
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Covariance Matrix Correlation Matrix
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Taylor Expansion around 

(mind for the remainder…)

The “error propagation” rule…

iiXE )(

Useful but to be used with care!!

(do moments exist??)
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21 XXX indepXX 21 , ][XVCompare               with ][XVep
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 XXX0);,|(~ iiii xNX  Think about  ][XVep

Exercise:

1)

2)



6) INTEGRAL TRANSFORMS

Fourier Transform

Moments of a Distribution

 21 XXX

45

5) ORDERED STATISTICS       (see section 6 of the notes)
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Mellin Transform

 1

2121 ;  XXXXX

(see back-up slides and notes for details+ useful examples/relations)

(Laplace)



7) LIMIT THEOREMS 

and

CONVERGENCE
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Find the limit behaviour of a sequence of 

random quantities   

convergence criteria

General Problem:

 
1kkX
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n
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kn X
n

Z
XX

ZXZ

Example:

How is         distributed 

when                    ?
nZ

)( n

~“distance”

1) More or less strong convergence

2) May have convergence for some criteria and not for others

Distribution

Probability

Norm)( RL p

Almost Sure

Uniform

Central Limit Theorem

Weak Law of Large Numbers 

Strong Law of Large Numbers

Glivenko-Cantelli Theorem

Convergence in Quadratic Mean

Glivenko-Cantelli Theorem (weak)

Logarithmic Convergence

Convergence in:
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Chebyshev Theorem

X  2,with finite mean and variance
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2)()(  XXg

Bienaymé-Chebyshev Inequality

0)(  XgY
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Let                be a sequence of independent r.q. with the same Distribution Function 

and  first order moment

 ,...,...,, 21 nXXX

 
1nnX X if, and only if

  0;0)(lim  XxXP nn

converges in probability to

Convergence in Probability Consider the sequence

Def.:

 
1iiX

][ iXE

  0;0lim  nn ZP

lim (Prob)
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Z
XX

ZXZThe sequence converges in Probability to          

LLN in practice:… 

WLLN: When n is very large, the probability that Zn differs from μ by a small amount 
is  very small  Zn gets more and more concentrated around the real number μ

But “very small “ is not zero:   it may happen that for some k>n, Zk differs from μ by 
more than ε …

(real number)  ||:dimensionsn

Weak Law of Large Numbers  (J. Bernouilli…)
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Problem: show this from Chebyshev Inequality if V[Xi ]=σ2



Let                be a sequence of independent r.q. with the same Distribution Function 

and  first order moment
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Z
XX

ZXZThe sequence converges in Almost Sure to          

Convergence Almost Sure  ,...,...,, 21 nXXXConsider the sequence

 
1nnX X if, and only ifconverges “almost sure” toDef.:

Prob (lim)  0;0)(lim  XxXP nn

Strong Law of Large Numbers  (E.Borel, A.N. Kolmogorov,…)

LLN in practice:… 

WLLN: When n is very large, the probability that Zn differs from μ by a small amount 
is  very small  Zn gets more and more concentrated around the real number μ

But “very small “ is not zero:   it may happen that for some k>n, Zk differs from μ by 
more than ε …

SLLN: as n grows, the probability for this to happen tends to zero 50
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nX )(~ xFX if, and only if

)(;)()(lim)()(lim FCxxXPxXPxFxF nnnn  

or, equivalently,

The r.q.          tends to be distributed as

Rtxxnn  ;)()(lim 

Convergence in Distribution

Def.:

and their corresponding DF’s:

 ,...,...,, 21 nXXXConsider the sequence

Convergence in Distribution determined only by DF

 RQ do not have to have same support
Central Limit Theorem  
(Lindberg-Levy,…)

Problem: show this from  )(lim tnn 
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1) Sequence of independent r.q. 

In the limit                          n

same distribution

 2,finite mean and variance

2) Form the sequence
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standardized:
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Unifom DF
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Example (CLT: Watch for conditions of applicability!!):
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Parabolic DF
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Cauchy DF   
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 ,...,...,, 21 nxxx

Glivenko-Cantelli Theorem

If observations are iid:   0)()(suplim  xFxFP nxn

The Empiric Distribution Function converges uniformly 

to the Distribution Function            of  the r.q. X

)(ne

)1(e one observation of X }{ 1x

number of values xi lower or equal to x

n

Empiric Distribution Function

)(xF

Uniform Convergence

)(xf

0)()(suplim 


 xfxf n
Sx
xn

converges uniformly to 
1

)(
nn xfThe sequence if, and only ifDef.:

experiment

independent, identically distributed

RSff n :,
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(show that from Mellin Transform)

… Bootstrap in 

Monte Carlo
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End of 

Lecture 1…

Backup slides: Notes on Integral Transforms



6) INTEGRAL TRANSFORMS
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Properties:

“Fourier” Transform… (Characteristic Function)

Probability Density…

][)( ixteEt 

1)(  t

)()( tt 

1)0( ►

► bounded

►Schwarz symmetry

►Uniformly continuous in R

Exists for 

all 

Inversion Theorem (Lévy,1925)
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Discrete:

Reticular: bnaxk 
Zn

bRba



 0,,

► One-to-one correspondence between DF and CF

► Two DF with same CF are the same a.e.

CRt  :

  )()(|,0 tt

(all necessary  but not sufficient)

)(X
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If are n independent random quantities
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Useful Relations:

►

►

If  distribution of       is symmetric: 

then            is a real function
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Pole of order n+1 at z=0
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Some Useful Cases for the Sum of Random Quantities:
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)|(~ SxPoX 

),|(~ SSxNX 
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),|(~ SS baxCaX
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nS bbb  1
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Moments of a Distribution
(Fourier / Laplace Transforms   usually called “moment generating functions”)
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Strip of holomorphyProbability Densities…
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Mellin Transform
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Convergence of integral
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Independent and non- negative
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Useful Relations:
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Strip of holomorphy
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Be careful with strips and integrals! … 

(see Notes for more examples)
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Example Be careful with strips and integrals …

ss

x
dxxxsM

s
s

X

1
)()(

1

00

)1,0(

1  


 1

converge for

 ,00s

ss

y
dyyyysM

s
s

XY 














 

2

1

2
)()(

1

2

0

2

),1(

1
1 1  2,02s

1

21


 XXZ

)2(

1
)()()( 1

ss
sMsMsM

XXZ


 

 2,0

Strip of holomorphy

0c
real

c0 2

10ln  xx

c 20

10ln  xx
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MT: usually more involved but… we have the moments with same effort
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Example: Ratio of Normal and χ2 Distributed r.q.
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Example: Ratio of two Normal Distributed r.q.

2)  Has no variance 
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MC sampling Pdf: p(x)


