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Outlook

• Neutrinos: discovery and early ideas.

• What are neutrinos.

• Neutrino interactions.

• Oscillation phenomenology:

• Solar neutrinos 

• Atmospheric neutrinos + Long Base line experiments.

• θ13 & CP violation.

• Majorana mass & 0ν2β

• Closing remarks
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Neutrinos

• Neutrinos were proposed in 1931 by 
Pauli in a desperate attempt to 
understand the beta spectrum.

• He proposed the existence of an almost 
massless particle of spin 1/2 that is 
invisible: 

• no charge 

• weakly interacting. 
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Neutrinos

• Neutrinos are fermions of spin 1/2

• No electric charge and no QCD color (no electromagnetic or 
strong interactions). 

• They interact only through weak and gravitation interactions 
(feeble). 

• Very low mass:   < 10-6 times the electron mass.

• After discovery of the parity violation in β-decays, the two-
component neutrino theory (Landau , Lee and Yang and Salam,  
1957) was the first theoretical idea about neutrino masses. 

• Two neutrinos (Left-Right), one of them is “sterile” (do not 
interact) so it is not “needed”.
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We know now that Pauli was basically right 
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 Chirality & interactions
• There are 4 independent solutions to the Dirac Equation: 

• The 4 solutions (2 particle and 2 antiparticles) can be represented as 
eigenstates of the (chirality) projector:

• It turns out that nature relates chirality to the weak interactions.  
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• Only Left handed neutrinos and right handed neutrinos interact as a 
consequence of the weak interaction.

•  It is not true for charged leptons where right handed partners 
interact through neutral currents. 

• A “traditional” mass term requires the existence of Right handed partners: 

• But, those partners are sterile (do not interact) in the Standard Model. 
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 Chirality & interactions

Dirac LD = �mD�̄L�R + h.c.

If they do not interact, they are not needed, so theoretically 

mν= 0 is (was) the preferred solution. 
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Helicity

• Helicity is related to the projection of spin in the direction of movement: 

• The helicity projector is 

• The limit for ultra relativistic particles (or massless) is chirality projector: 

• This is the origen of confusion between the two terms. 
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Helicity is not a 
Lorentz invariant

Lorentz boost will 
change particle 

direction but not the 
spin rotation sense. 

For massive particles we can produce left handed chiral and right handed helicity states. 
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Helicity vs Chirality
• This is important to understand charged pion decay.

• Charged pion is spin 0 particle decaying to neutrino and charged lepton.

• Spin = 0 forces the final state leptons to have opposite spin and helicity. 

• But, weak interactions requires both to be left handed chiral. 

• The chiral state has always small component of  “wrong helicity” 
proportional to the lepton mass. 

• Decay to muon is more probable than to electron even if it is not 
favoured by the available phase space. 
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This is a consequence of (1-γ5)
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Neutrino interactions

• Neutrinos interact solely through weak interactions. 

• Charged and neutral currents. 

• These forces are mediated by massive W and Z bosons. 
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• MW ~ 80 GeV and gw ~ 0.7 

• This is between 104 and 107 weaker (depending of q2 ) than 
the electromagnetic. 

What is weak ? 
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Neutrino interactions

• Being so weak, the detection of neutrinos needs very massive targets:  
matter!. 

• Avogadro’s number help! 

• In matter, the neutrino will find: 

• electrons

• protons/neutrons 

• nuclei. 

• Significant differences between antineutrinos, neutrinos and neutrino 
flavours.
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Neutrino-electron
• All neutrinos interact through neutral current with electrons. 

• Only electron neutrinos has charged current interactions unless 
the energy of the neutrino is larger than the lepton mass.
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Antineutrino-electron
• All anti-neutrinos interact through neutral current with 

electrons. 

• Only electron anti-neutrinos suffer charged current interactions
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E⌫̄e > mµ,⌧If                         muon and tau neutrinos possible in final state.
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Neutrino-nucleon
• Both neutrino and antineutrinos have charged and 

neutral current interactions with nucleons.
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• But with different strength. 
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Neutrino-nucleon
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Neutrino-nucleon
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• Several interaction channels depending on the hadronic 
final states. (Similar for neutral currents)  

⌫µn ! µ�p

⌫̄µp ! µ+n

⌫̄µp ! µ+�0

⌫̄µn ! µ+��

⌫µp ! µ��++

⌫µn ! µ��+

CCQE
CCRes

CCDIS
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 Neutrino interactions
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Not well 
defined!

Impulse 
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Modelling interactions
• Normally considered the “impulse 

approximation” or factorisation: 

• nucleon assumed free in nuclear 
media ! 

• nucleon free in nuclear potential: no 
nucleon correlations!. 
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νl l±

• Nuclear effects added on the top:

• Fermi momentum. 

• Pauli blocking. 

• Short and long range nuclear 
correlations. 
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Modelling interactions
• Charge current without pions are 

made of several interactions

• 2p2h is basically the exchange of a 
meson between two close by 
nucleons in the nucleons with the 
emission of 2 nucleons.  
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CCQE CC-2p2h

•  The pion can be produced in a contact point or virtual Δ++.
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Number of neutrinos

• Measure as the width of the 
Z boson scanning the 
production  as function of 
the center of mass energy 

• The width is the sum of the 
width to all possible 
disintegration channels
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Neutrino and mass
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Neutrino oscillation
• Pontecorvo proposed, back in 1957, that the lepton sector might show 

oscillation phenomena similar to that of the K0 meson. Neutrinos were neutral 
particles, and the lepton-hadron analogy was assumed.

• At that time Davis was doing experiments with anti-neutrinos from a reactor 
looking for the reaction: 

• And observed some events.

• At that time only one neutrino especie was known and then the only option 
was to have oscillations (also similar to K0 system) was:

• In his model, he was already proposing that ν were a mixed system of two 
“Majorana particles” with different mass (ν1,ν2). (We will come back to this!)
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Neutrino oscillation

• The νμ  was discovered at Brookhaven in 1962 by Lederman, 
chwartz and Steinberger. 

• At this time, Pontecorvo proposed the alternative model based on 
νμ ⇋ νe oscillations. The model “only” required that neutrinos were 
massive.

• Around same time the first experiments to detect Solar neutrinos 
were proposed by Davis & Bahcall. Pontecorvo suggested that if 
neutrinos oscillate, the experiments will see fraction of the 
predicted neutrinos from the sun …

• νe  ➝	νμ

• + not enough energy to produce a muon, so νμ is 
invisible.
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Solar neutrinos
• The sun is a thermal fusion nuclear reactor. 

• The sequence of reactions is known to a good level. 

• This allows to predict a relation between the neutrinos and the 
sun luminosity.
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p+p à 2H + e+ + νe p+p+e- à 2H  + νe

2H+p à 3He + γ

3He+3He àα+2p 3He+p àα+ e+ + νe
3He+α à 7Be + γ

7Be+p à 8B + γ 7Be+e- à 7Li + νe

7Li +p à α+α 8B à2α+ e+ + νe

(99.77%) (0.23%)

(84.92%) (~10-5%)

(15.08%)

(15.07%) (0.01%)
hep
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Solar neutrinos

• Solar net reaction is 4p ➝ 4He  2e+  2 νe

• The sun releases 25.7MeV/c2, or 4.12x10-12 Jules per Helium nucleus 
produced (or ½ of that per neutrino). 

• The solar constant is 1370Watts/m2 at Earth’s orbit. 

• The neutrino flux should be then 1370/(2.06x10-12)/m2/sec or

• 6.65x1010/cm2/sec. 

• This number is known to ~10% level.
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Solar neutrinos

25
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Solar Neutrinos

• The first experiments were based on radiochemical detection: 

• Chlorine: νe37Cl ➝37Ar e-  (Eν> 0.8 MeV)

• SAGE/Gallex/GNO: νe 71Ga ➝71Ge e-  (Eν> 0.2 MeV)

• Later the water Cherenkov detector Kamiokande was added to 
the list with a threshold of ~6 MeV.

• Water Cherenkov added the possibility of online event 
recording and the determination of neutrino direction:

• Reduced background, Day/Night and seasonal effects...
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Solar neutrinos

27

71±571±5

• All of them detected neutrinos, but at a different rate than expected: solar model?, 
detector efficiencies?, neutrino deficit through oscillations?,…

• This disagreement was called for years “the solar neutrino problem”. 
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Solar neutrino problem

• Pontecorvo: "Unfortunately, the weight of the various thermonuclear reactions in the sun, and the central 
temperature of the sun are insufficiently well known in order to allow a useful comparison of expected 
and observed solar neutrinos..."

• Georgi & Luke: "Most likely, the solar neutrino problem has nothing to do with particle physics. It is a 
great triumph that astrophysicists are able to predict the number of 8B neutrinos to within a factor of 2 
or 3..."

• Yang: "I did not believe in neutrino oscillations even after Davis' painstaking work and Bahcall's careful 
analysis. The oscillations were, I believed, uncalled for."

• Drell: "… the success of the Standard Model was too dear to give up."
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Neutrino oscillation
• The first phenomenological neutrino oscillation model was 

elaborated by Gribov and Pontecorvo in 1969.  

• The model assumed that: 

• neutrinos have mass, albeit a very small one. 

• neutrinos interacts as νe or νμ  (neutrino flavour).

• the eigenstates of flavour and mass(Lorentz) are not the same. 
They can be related via a linear combination or rotation 
between the two bases.
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Neutrino oscillation

30

• If neutrinos 1 & 2 propagate at different speeds (mass) and they 
keep the coherence at the interaction point the proportions are 
changed and it might appear other neutrino flavour.
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Neutrino Oscillation

• When we produce electron neutrino:
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• Neutrinos are transported in vacuum following the Schrödinger 
equation in vacuum:
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Neutrino Oscillation
• If we produce a νe, after some time the state is:
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• The probability of getting a νμ at the interaction is then: 
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• Flavour-lepton number is not conserved!. Opens the possibility for 
flavour violation in lepton decay & production.
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Neutrino Oscillation

33

θ = 3.141592/2.         Δm2 = 2.x10-3 eV2
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Neutrino Oscillation
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θ = 3.141592/2.      Δm2 = 2.x10-3 eV2

Distance (km)

P(
ν e
➛
ν μ

)



F.Sánchez, CLASHEP 2017 
Hacienda Galindo, March 2017

Quantum coherence

• In quantum mechanics the coherence of two states is essentially their 
ability to interfere. Fully coherent states can be described by a 
superposition of the states, and interference may take place. If the 
states are, instead, fully incoherent, there will be no interference.

• Neutrino oscillation happen only in the coherent period. 

• Neutrino wave packages need to overlap in space to ensure the 
coherence.  

• When the 3 mass state neutrinos wave packages are separated (L >> 
Lcoh) the oscillation stops. 

• We get then 3 mass states, none of them with a well defined flavour. 
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Oscillations with 3 ν’s

• With 3ν, there are 3 angles and 1 imaginary phase: 

• The phase allows for CP violation similar to the quark sector. 

• There are also 2 values of Δm2, traditionally Δm212  &Δm231.
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Lepton & quark mixing

• Quarks & neutrinos exists in matter 
and vacuum as mass states.

• In quark mixing, the quark is at the 
mass state at the initial and final state.

•  In neutrino oscillations, the mass 
state are intermediate states, initial 
and final are flavour states.

• There are cases where the neutrino 
behaves “as the quarks do”: i.e. lepton 
flavor violation in decays.
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Neutrinos in matter
• Neutrinos can have two types of interaction with 

matter: 

• Incoherent inelastic: 

• σ~10-43 (E/MeV)2 cm2

• Coherent: 

• The medium is unchanged and the scattered and 
un-scattered waves interfere enhancing the effect. 

• Coherent interactions introduces a phase in the 
propagation, that can be invisible…
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Except for the fact that matter has electrons but no muons or taus! 
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Neutrinos in matter

39
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• The coherent interaction potential (real VC) introduces a phase that 
depends on the neutrinos flavour.

• The Schrödinger equation of ν in matter
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Neutrinos in matter

40

• During the evolution of the neutrino in matter, it will be a linear 
combination of the three neutrino flavour. 

• Each one with a different phase. 

• The NC phase is common and factorises.  The CC remains and it 
applies to electron neutrinos only: 
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• This is like adding an index of refraction to the electron neutrino.  

• mass eigenstates and eigenvalues are changed: 

Matter introduces an effective mass splitting and mixing angle.

Vc = diag(±
p
2GFne + V� , V� , V�) ⌘ diag(±

p
2GFne, 0, 0)



F.Sánchez, CLASHEP 2017 
Hacienda Galindo, March 2017

Neutrinos in matter

41
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• Taking Vα = ±√2 GF ne , Vβ=0 

• When crossing A ~ Δm2cos(2θ),   tan(2θm)  changes sign:

•  The proportions of 1&2 invert for α & β states (“level crossing”).

T
he

 t
he

or
y

• The new mass levels and mixing angles can be computed (for 2 
neutrinos) to be: 

A depends on neutrino energy and electron density:

A matter effect is smaller for smaller Eν & electron density ne 

Matter effects are more or less relevant depending on mixing angle and Δm2
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SNO

• SNO experiment was proposed to measure the total 
solar neutrino flux and the electron component.

• Elastic scattering: νx  e- ➝ νx e-

• νe  is 7 times larger than νμ,τ

• Charged current: νe d ➝ p p e-

• direction and spectrum

• Neutral current: νx d ➝ νx  n p 

• unbiassed total neutrino flux.
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Solving the solar neutrino problem
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SNO
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Oscillation from sun 
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Solar matter
oscillations

Vacuum 
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depending on mixing angle and Δm2

Oscillations inside 

the sun

Oscillations between 

sun & earth
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Solar neutrinos

• The sun produces νe. The neutrino propagates in a high density 
matter with a radial dependency.

• In the sun, the matter hamiltonian dominates the vacuum hamiltonian. 
(A>>Δm2cos(2θ)).  

• Matter hamiltonian is diagonal in flavour.   The sun produces an 
electron neutrino that is also eigenstate of the Hamiltonian, with the 
highest effective mass (V>0). 
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Solar neutrinos
• The electron density varies adiabatically (slowly)… so the solution 

of the Shrödinger can be obtained without time dependency. The 
neutrino is always an eigenstate of the Hamiltonian. 

• When the neutrino leaves the sun, it is still in eigenstate of the 
propagation, but this time “in vacuum” (ν2)
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• The vacuum state ν2, propagates without interference to the Earth 
⇒ no seasonal dependency. 

• This effect occurs because locally the off-diagonal terms of the 
Hamiltonian are negligible with respect to the diagonal.
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Solar neutrinos
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• Because, there is “level crossing”, the main state in matter is the 
opposite to the most probable mass state from νe in vacuum. 
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Oscillation from sun 
Need good Δm2 , 

tan(θ), day-night or 
seasonal effect 
determination.
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Support slide
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