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Outline

• Why go Beyond the Standard Model

• How to go BSM

• Supersymmetry

• Extra dimensions

• Multi-Higgs models

• Flavour or family symmetries
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Questions

• What are we made of?

• What is the origin of the 
Universe?

• What holds thing 
together?

• Why is there life?

• What am I doing here? 
 

• The Standard Model and 
theories beyond are our 
attempt to answer some 
of these questions 
(perhaps not the last 
one)

3



Symmetries
• Quantum field theory - 

combines quantum mechanics 
and special relativity

• Space-time symmetries:  
 rotations, translations, Lorenz 
and Poincaré transformations

• Internal symmetries:  
transformation of the fields in 
the theory → gauge 
symmetries

• Global  → spacetime 
momentum,  angular 
momentum, spin

• Local → gauge symmetries

• Continuous symmetries→ 
conserved quantities

• rotational symmetry 
angular momentum 
conservation

• translational symmetry 
momentum and energy 
conservation 

• Discrete → charge and parity 
conjugation CP

• Label and classify particles

• Determine interactions among 
particles ➝ they must respect 
the symmetries

• Exact, broken, a little bit 
broken (softly), hidden
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Symmetries

• Modern physics is built on the observation that 
there are symmetries in Nature (exact or broken)  

• Symmetry is a transformation that leaves the 
system invariant
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• QFT is built on space-time symmetries and internal 
symmetries:

• Space-time symmetries 
transformation acts on coordinate of space-time  
 

• Internal symmetries 
transformations of the different fields
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• Symmetries have as a consequence conserved 
quantities — Noether’s theorem

• They classify and label particles:  
mass, charge, color, spin, etc

• Invariance under gauge symmetries needs extra 
gauge bosons, which are the mediators of the 
interactions, of spin 1

• Invariance under the Poincaré group needs a 
gravitational field, of spin 2
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Accidental Symmetries

• They appear, not imposed

• Baryon number 
               for quarks,              for leptons  
prevents proton decay

• And the leptonic symmetries:  
zero for the rest 
 
prevent decays like  
also predicts massless neutrinos -  
in contradiction with experiment  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Broken symmetries

• The SM has also, C, P and T discrete symmetries

• CPT conserved

• P violated in weak interactions, respected in EM 
and strong

• C violated in weak interactions

• CP violated in weak interactions, not in strong and 
EM
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The Standard Model

• Poincaré symmetry in 
4D

• Internal symmetries 
= gauge symmetries 
 
SU(3) strong 
interaction  
 
SU(2)×U(1) 
electroweak

• Particles acquire mass 
via the Higgs 
mechanism ➝ 
electroweak symmetry 
breaking

• Gauge fields are 
bosons

• Matter fields are 
fermions

• Very different statistics
10



• Standard Model very well tested

• Constructed by an interplay between theory and 
experiment

• Based on symmetry principles 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SM Lagrangian

• Gauge group 
  SU(3)C╳ SU(2)L╳U(1)Y  

strong, weak and 
electromagnetic interactions 
gauge bosons mediators of 
force:  
gluons, W±, Z, photons

• Yukawa interactions 
mediated by the Higgs 
boson

• Particles acquire mass 
through the Higgs 
mechanism 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Why go beyond?

• The hierarchy problem

• Neutrino masses

• Origin of gauge interactions

• Dark matter

• Matter over anti-matter abundance

• Cosmological constant

• Inflation

Higgs sector not natural
Fermion masses vastly 

different
Origin of electroweak 

symmetry breaking 
unknown

Dirac or Majorana 
neutrinos

Strong CP problem

Not enough CP in SM for 
Baryogengesis

Value of cosmological 
constant

Inflation inconsistent with 
non-zero baryon number

Is DM a particle, then 
which, is it only one
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Symmetry breaking

• Spontaneous 
symmetry breaking 
process (spontaneous) 
through which a 
system in a symmetry 
state ends up in a 
different symmetry 
state

• The Lagrangian obeys 
certain symmetries, 
but the minimal energy 
state does not have 
the same symmetries 

• Explicit symmetry 
breaking 
Terms in the 
Lagrangian that do not 
respect the symmetry

• Associated to phase 
transitions
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Higgs Potential

17



Higgs Field

• When the electroweak symmetry is broken through 
the vev v of the Higgs field, gauge bosons and 
fermions acquire mass 
 
 
 
 

• The Higgs fields also acquires a mass 
 
 

MW = gv/2

MZ = v
p
g2 + g02/2

M2
H = �v2

mf = gfv/
p
2
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Hierarchy problem

• SM valid to a cut off 
scale 𝚲 

• Higgs mass gets 
quadratic radiative 
corrections ➝ 
diverges 
 

• Fine tuning needed 
between the bare mass 
and corrections to get 
mass ~ 125 GeV 

 

• If 𝚲 is the Planck scale 
then 
“some” fine tuning 
needed.... 
 
 
 

�m2
h / ⇤2

M2
h / M2(⇤2)� Cg2⇤2
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CP violation
• Complex phase in CKM 

matrix → three generations

• Processes occur at different 
rates for particles and anti-
particles  → CP is violated

• First observed in Kaon-anti 
Kaon system, now also in 
decays of B mesons

• Indirect CP violation, CP 
violation not directly 
observed, the result of the 
decays are 

• Direct CP violation

N̄ ! N 6= N ! N̄

N̄ ! f̄ 6= N ! f
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PMNS vs CKM

democratichierarchical
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Anti-matter
• In the SM there is an 

anti-matter particle 
for each matter 
particle  

• When they annihilate 
they radiate energy, 
they produce gamma 
rays, neutrinos, or 
particle anti-particle 
pairs 
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Anti-matter 
Our Universe consists mainly of matter

• The Universe made mainly of what we call matter

• We get anti-matter particles from the cosmos, but 
few
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Matter and Anti-
matter

• For every SM model particle there is an anti-particle

• If they meet they annihilate

• It adds a lot more particles to our table...  
but all of them have been observed experimentally
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Baryogenesis

• To explain abundance of matter over anti-matter we 
need more CP violation than in SM

• Sakharov conditions:

• Baryon number violation

• Outside thermal equilibrium (or process and its 
inverse proceed at same rate)

• CP-violation (or process and its CP mirror would 
occur at same rate)
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g-2

• Interaction between 
photon and muon, 
QED corrections to 
the magnetic moment, 
in SM  
     

• The experimental 
value of the anomalous 
magnetic moment of 
the muon differs from 
the SM one...

– The Standard Model has around 20 parameters, which must be measured then set ‘by hand’. Many
consider that a more satisfying fundamental theory would relate all of these parameters to less (or
ideally one) fundamental parameter.

– What particle constitutes the inferred cold dark matter in the universe? It is not contained in the
Standard Model. Planck and large scale structure data favour a cosmological constant-cold dark
matter model, where approximately 22% of the universe’s energy budget lies in dark matter, only
4% in ordinary matter, and some 74% in mysterious dark energy3. Neutrinos constitute a hot
component of dark matter (since they are relativistic when they decouple from the thermal plasma
i.e. they smooth density perturbations in the early universe on smaller scales), so they are not good
candidates.

Fig. 2: For time t ! (i.e. time increasing toward the right), this describes annihilation: once the particle physics
model is set, a calculation tells us how much is thermally produced in the early universe. This also is a diagram for
dark matter indirect detection, for example by dark matter collecting in the core of the sun and annihilating into
neutrinos which could be detected by the IceCube experiment. For t  , the diagram depicts collider production
at (e.g.) the LHC, whereas for t ", it’s direct detection, where dark matter colliding with heavy nuclei may produce
measurable nuclear recoils.

– The anomalous magnetic moment of the muon: This is a particular interaction between the photon
and the muon: the Dirac equation predicts a muon magnetic moment

~M = gµ
e

2mµ

~S, (11)

and at tree level, gµ = 2. However, it can be measured very precisely by storing muons in a ring
with magnetic fields, then measuring the precession frequency of their spins. The ‘anomalous’ part
comes from loops involving various particles. Defining aµ ⌘ gµ�2

2 [2],

aexp
µ = 11659209.1(5.4)(3.3)⇥ 10

�10, aSM
µ = 11659180.3(4.2)(2.6)⇥ 10

�10,

) �aµ = aexp
µ � aSM

µ = 28.8(6.3)(4.9)⇥ 10

�10, (12)

3A tiny negative energy density of space-time, ⇤ ⇠ O(10�3 eV)4.

Fig. 3: Some SM contributions to the anomalous magnetic moment of the muon. From Ref. [2].

5

�a
µ

= aexp
µ

� aSM

µ

= 28.8(6.3)(4.9)⇥ 10�10

gµ = 2

aµ ⌘ gµ � 2

2
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Dark Matter
• There is evidence for dark 

matter from rotational 
curves from galaxies, 
gravitational lensing

• Best solution is a non-
interaction (or only weakly) 
particle

• Is there a dark matter 
candidate in the SM?

• Neutrinos could be part of 
DM, but 100% as DM is 
incompatible with large 
scale structure formation
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Open questions
• Are quarks, leptons, Higgs 

really fundamental?

• Why are there three 
generations?

• Why the gauge group of the 
SM?

• Why are the masses of the 
particles so different?

• Is there only one Higgs?

• What stabilizes the Higgs 
mass?

• Are there right-handed 
electroweak interactions?

• Why is the electroweak 
scale special? What drives 
the eW symmetry breaking?

• What is the scale of the 
new physics?

• Are there right handed 
neutrinos? 

• Are the neutrinos Dirac or 
Majorana?
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More open questions...

• What is the origin of 
the free parameters of 
the SM?

• Are fundamental 
particles really point-
like?

• What is the origin of 
CP violation?

• Why is there more 
matter than anti-
matter?

• How are the gauge, 
Yukawa and Higgs 
sectors related at a 
more fundamental 
level?

• Is there mixing of 
charged leptons?

• Is there proton decay?

• What happens as we 
move up in energy?  
What are the scales of 
physics?
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Beyond the SM

• Evidence of physics BSM are the 
neutrino masses

• More evidence is the existence of 
dark matter 
we’ll assume it is a particle(s)  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How to proceed?

• Traditional way is to 
add more symmetries:

• Gauge symmetries 
➝ may imply new 
interactions and/or 
particles

• Symmetry between 
bosons and fermions

• Horizontal-family 
symmetries

• Left-right 
symmetries

• Add more particles 
and/or interactions

• Composite particles

• Particles not point-like

• Add more spatial 
dimensions

• Combinations of all 
the above...

33



Grand Unified Theories GUTS
• Add symmetries:

• Strong, weak and 
electromagnetic forces are 
just different realizations of a 
more fundamental one

• Popular groups:  
SU(5)⊃SU⨉(3)⨉SU(2)⨉U(1)  
SO(10)⊃SU(5)  
SO(10)⊃ 
SU⨉(4)⨉SU(2)L⨉SU(2)R

• Can explain approx mass 
ratios, fractional charges

• Leptoquarks, proton decay

• Break B symmetry

• Unification not good in SM
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SU(5)

• SU(5)⊃SU⨉(3)⨉SU(2)⨉U(1)  
SM particles fit nicely, except for right handed neutrinos

• SU(5) broken to SM through the vev of the adjoint 45  
 
 
 
 
 

• SM extrapolated to low energies through RGE’s

• me(GUT) = md(GUT)   incompatible with observation

• Too fast rate of proton decay
35

Fig. 4: The embedding of a family of SM fermions. The indices 1, 2, 3 refer to the three colours. The fields dc, uc,
and ec are the conjugated of dR, uR, and eR respectively.

Since in the SM we have Q = Y/2 + T3, Eq. (12) implies that the hypercharges are quantized following
the relations

YlL = 2YeR = �4

3

YuR =

2

3

YdR = �1

3

YQL . (13)

In the SM, since the U(1)Y is an Abelian group, the hypercharges could have been, in principle, arbitrary
real numbers. It is then surprising to find the relation Eq. (13)5.

A possible explanation for the SM hyperchage quantization comes from assuming that the SM
group of symmetries is, at high energies, a much larger group G. If this group G only contains non-
Abelian groups all charges will be quantized. The minimal group G fulfilling this requirement is the
Pati–Salam group [6] SU(4) ⇥ SU(2)L ⇥ SU(2)R. Demanding G to be a simple group, the minimal
case is G = SU(5), the model of Georgi and Glashow [7]. We discuss it next.

3.1 SU(5) GUT
The SU(5) group is defined as the set of 5 ⇥ 5 unitary matrices with determinant 1. This group contains
SU(3) ⇥ SU(2) ⇥ U(1) as a subgroup, corresponding respectively to the 5 ⇥ 5 matrices

✓
U3⇥3

0

◆
,

✓
0

U2⇥2

◆
,

0

BBBBB@

ei 23 ✓

ei 23 ✓

ei 23 ✓

e�i✓

e�i✓

1

CCCCCA
, (14)

where U3⇥3 (U2⇥2) is a 3 ⇥ 3 (2 ⇥ 2) matrix. The last matrix, to be associated with a U(1)Y transforma-
tion, shows that, as expected, the hypercharges are no longer free numbers but they are quantized. The
SU(5) group has 24 generators, each of them has an associated gauge boson. Only 12 of then can be
identified with the SM gauge bosons. The other 12 are extra gauge bosons that must get masses MGUT

above the electroweak scale where the SU(5) must be broken. These extra gauge bosons, referred to as
X and Y bosons, have charges (3,2)5/3 and (3̄,2)�5/3 under the SM group.

The SM fermions must be embedded in SU(5) representations. Amazingly, Georgi and Glashow
realized that a full SM family of fermions could be neatly embedded into two SU(5) representations,
the 5̄ and the 10. The explicit embeddings are given in Fig. 4. These embeddings give the correct
hypercharge assignments Eq. (13). Such simplicity, however, does not occur in the embedding of the
Higgs doublet into an SU(5) representation. The minimal case is to embed the Higgs into a 5, but this
requires one to introduce a colour triplet accompanying the Higgs. Similarly to the X, Y bosons, this
colour triplet must get a mass when SU(5) is broken. This is known as the doublet-triplet splitting
problem in GUT.

5We must say, however, that the SM hypercharges are not really free parameters since the absence of quantum anomalies in
the SM forces them to fulfil a set of equations. Equation (13) is a particular case that leads to an anomaly-free theory.
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• SU(3) and SU(2) have quantised charges, but not U(1)

• Q = Y2 + T3, charge generator is a linear combination of 
SU(2) and U(1), which are identified with the generators of 
a GUT,  e.g. SU(5)

• Generators of SU(n) are traceless, for down quarks  ⇒ 

• Similarly for up quarks

36

The simplest representations in SU(5) are the fundamental representations (1, 0, 0, 0)
and (0, 0, 0, 1), with, using (11), 5 and 5̄ particles, the 5̄ will be:

 ̄ =

0

BBBB@

a1

a2

a3

a4

a5

1

CCCCA
.

As the color indices acts on the first three rows and SU(2) acts on the last two, ai=1,2,3 will
be an SU(2) singlet and an SU(3) triplet, while ai=4,5 will be an SU(2) doublet and SU(3)
singlet. A raising or lowering operator on this object cannot change the spin direction, so
all the particles have to have the same helicity. For the first family, looking at table 2, the
color triplet can only be identified with either of the right-handed quarks, as the antiquarks
transform as color antitriplets. The SU(2) doublet must be identified with either L or with
L̄, this is because the SU(2) representation is real, i.e. 2 = 2̄ [10]. Assigning L̄ to a4,5

yields:

 ̄ =

0

BBBB@

qr
qg
qb
e+

⌫̄e

1

CCCCA

R

.

The charge operator Q = T3 + Y/2 is just a linear combination of the generators of SU(2)
and U(1), and they were identified with generators of SU(5). Using this and the fact that
generators for the SU(n) groups have to be traceless, the quarks in  ̄ can be identified. So
this requires that the eigenvalues of Q add up to zero, using this on  ̄ gives:

Q(⌫̄e) +Q(e+) + 3Q(q) = 0 ) Q(q) = �1

3
e,

hence it must be the right-handed down quark that is in this representation, this is the
quantization of the down quark charge in SU(5). Finally we have that the 5̄ (5) represen-
tation is:

 ̄ =

0

BBBB@

dr
dg
db
e+

⌫̄e

1

CCCCA

R

,

0

BBBB@
 =

0

BBBB@

d̄r
d̄g
d̄b
⌫e
e�

1

CCCCA

L

1

CCCCA
. (18)

Using Young diagrams explained in section 2.3.1 larger representations can be built
from the 5 by connecting it with itself, i.e. taking 5⌦ 5, this gives:

⌦ a = a �
a
.
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So:
(1, 0, 0, 0)⌦ (1, 0, 0, 0) = (2, 0, 0, 0)� (0, 1, 0, 0),

in particle numbers this corresponds to, using (11):

5⌦ 5 = 10� 15.

The 15 is the symmetric part and the 10 is the antisymmetric. The symmetric part can
be exluded as it contains a sixtuplet of color, which does not fit with any of the SM states
[14]. To obtain the elements of the antisymmetric matrix one can form:

� =

0

BBBB@

dr dg db e+ ⌫̄e
dr 0 a12 a13 a14 a15
dg 0 a23 a24 a25
db 0 a34 a35
e+ 0 a45
⌫̄e 0

1

CCCCA
,

where the zeros are due to the antisymmetry property of the representation, lower left part
has been left out as its elements are not independent (aij = �aji). To determine the aij
element the quantum numbers of charge, color and T3 for the i:th object to the left of
the matrix and the j:th object on top of the matrix are added together. The resulting
charge, color and T3 is then compared to the remaining fermions in the first generation
and the fermion that has these quantum numbers is then aij . So for a12 the charge is
Q12 = �1

3 � 1
3 = �2

3 , the color is c12 = r + g = b̄ and T 3
12 = 0 + 0, this corresponds to one

of the anti-colors of a color anti-triplet and SU(2) singlet. Looking at table 2 one sees that
a12 must then be the anti-blue anti-up quark. For a14 the charge is Q14 = �1

3+1 = +2
3 , the

color is just c14 = r and T 3
14 = 0 + 1

2 = 1
2 , so it is in a color triplet and an SU(2) doublet,

which is just the red up quark. Apart from showing examples of how the elements are found
this also gives the quantization of the up quarks charge, it must be Qu = Qd +Qe+ = +2

3 .
Identifying all of the elements finally gives:

� =
1p
2

0

BBBB@

0 ūb �ūg �ur �dr
�ūb 0 ūr �ug �dg
ūg �ūr 0 �ub �db
ur ug ub 0 �e+

dr dg db e+ 0

1

CCCCA

L0

BBBB@
�̄ =

1p
2

0

BBBB@

0 ub �ug �ūr �d̄r
�ub 0 ur �ūg �d̄g
ug �ur 0 �ūb �d̄b
ūr ūg ūb 0 �e�

d̄r d̄g d̄b e� 0

1

CCCCA

R

1

CCCCA
, (19)
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Matter content
3 generations
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5̄ ! (3̄, 1) 1
3
� (1, 2)� 1

2

10 ! (3, 2) 1
6
� (3̄, 1)� 2

3
� (1, 1)1

1 ! (1, 1)0

24 ! (8, 1)0 � (1, 3)0 � (1, 1)0 � (3, 2)� 5
6
� (3̄, 2) 5

6

dc and l

q, uc and ec

It also has a 24 irrep,  a scalar in the adjoint irrep,  
acquires vev and breaks SU(5)

νc

5̄� 10� 1

Y

2
= diag (�1/3,�1/3,�1/3, 1/2, 1/2)



• 24 generators, only 12 associated with the SM gauge 
bosons

• Other 12 are called X, Y  
These mediate proton decay,   
They acquire a vev and mass when SU(5) is broken

• The Higgs field is also embedded in a 5 irrep, but adds a 
coloured triplet.  This triplet also has to acquire a heavy 
mass, to suppress proton decay

• This is called the doublet-triplet splitting it implies a fine-
tuning

38

1. hypercharge quantization
2. gauge coupling unification
3. proton decay
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5 ! (1, 2) 1
2
� (3, 1)� 1

3

5̄ ! (1, 2)� 1
2
� (3̄, 1) 1

3

The Higgs in SU(5) can come in the 5 or 5 irreps

The triplet part can mediate 
proton decay

p

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:
u

u

d

X+ 4
3

e+

d̄

p

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:
u

u

d

e+

Y + 1
3

d̄

Figure 5: Two of the possible lowest-order diagrams for proton decay into a positron and
a neutral pion in SU(5).

If the scale was around ⇠ 1016GeV, proton decay by X or Y boson exchange would be
suppressed enough for the model to survive the experimental limits. As proton lifetime
is one of the fundamental tests of grand unification it will be mentioned in connection
to all the models mentioned in this report. Due to this the experimental limits and all
predictions of the proton lifetime are summarized and compared in the end of the report,
section 7, instead of this being scattered over all the sections. The simplest SU(5) theory,
i.e. a unification with the SU(5) gauge group with minimal Higgs content, is excluded by
the absence of proton decay at current limits. It is also ruled out by the B-test, as was
seen in the previous section.
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The leptoquarks X, Y  
can mediate proton decay 
at an unacceptable rate 
 
The coloured part has to 
be very heavy to avoid this

⁻
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Doublet-triplet splitting in SU(5) 

FINE-TUNED TO O(MW) 

5 ! (1, 2) 1
2
� (3, 1)� 1

3

5̄ ! (1, 2)� 1
2
� (3̄, 1) 1

3

� 5̄H 24 5H + 5̄H M 5H

MH =
�3

2
�V +M ⇠ O(GUT )

The Higgs mass comes from the terms

MH =
�3

2
�V +M ⇠ O(MW )

A lot of fine tuning needed to make this work



• Unification scale is ~ 1015 
GeV (only approximate)

• Renormalizable

• Extends the SM in a 
minimal way  
                  BUT

• Unacceptable rate of 
proton decay and other 
baryon and lepton number 
violating processes

• Fine tuned — doublet-
triplet splitting
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SO(10)

42

SO(10) � SU(5) � SU(3)⇥ SU(2)⇥ U(1)

45 ! 240 � 10�4 � 104 � 10

16 ! 101 � 5̄�3 � 15

16 ! 101 � 5̄�3 � 15

10 ! 5�2 � 5̄2

Two stages of
symmetry breaking

Modifies the unification scale

This affects the proton 
lifetime, can be be

Introduces more parameteresIncludes a 
right-handed neutrino



SO(10)

• Break SO(10) to the Pati-
Salam Group 
SU(4)C ⊗ SU(2)L ⊗ SU(2)R

• Four quark colour charges to 
start with

• More complicated pattern of 
breaking

• Usually the more simple 
breaking to SU(5) preferred

43

or SO(10) 

or E6 or Flipped SU(5) 
or G224 or ... 

and would you like 
SUSY with that? 



Supersymmetry

• Add more symmetry

• Coleman-Mandula Theorem:  
S-matrix is a direct product of the Poincaré group and an 
internal symmetry group.  
Internal and space-time symmetries can only be 
combined in a trivial way

• Possible to extend the Lie algebras to supergraded 
algebras, with anti-commutators, whose generators are 
fermionic operators  
 
Symmetry between bosons and fermions
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And why SUSY?

• Beautiful, only possible extension of Poincaré group

• It turns out is stabilizes the Higgs mass, realized after it 
was proposed ➝  solution to the hierarchy problem

• Gives candidates to dark matter

• Good unification of fundamental forces (we’ll see 
later...)  
can extrapolate physics at high scale

• Local supersymmetry ➝ supergravity

• Compatible with precision measurements of the SM 
not trivial...

• But also not found...
45



Solution to the hierarchy problem

• If SUSY exact the 
corrections to the 
Higgs mass coming 
from a particle and its 
superpartner cancel 
exactly  
 
 
 
 
 
 
 

• SUSY broken by soft 
terms (SSB):  
superpartner masses 
are different ➝ the 
cancellation is not 
exact

• SSB do not add ờ2 

terms, only log 
divergences

• The masses should be 
~ few TeV

46



Take these three

• Solution to the hierarchy problem, if SUSY around 
a few TeV

• Compatible with unification of the gauge couplings 
if the susy particles are around 1-10 TeV

• If lightest susy particle electrically neutral and 
stable, only weakly interacting, and of mass ~ few 
TeV ➝  
consistent with thermal DM matter  

• Remarkable coincidences (but might be just that...)
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N=1 Supersymmetry

• To transform bosons into fermions and viceversa, we have 
the generators of SUSY 
 

• Construct an irrep by acting on state that annihilates 
 

• No more states, since

• Two spin zero, two spin 1/2 states obtained  ⇒ 
matter multiplet  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Q1Q1 = Q2Q2 = 0

hand, a particle with mass m (GeV) with interaction suppressed by 1/Mpl has a decay width of order of
g2(m/1 GeV)

3
10

�38 GeV. Namely the lifetime, ⌧ ⇠ g�2
10

14
s/(m/1 GeV)

3, would be much shorter
than the life of our Universe (⇠ 4.3⇥10

17 s), where g is the coupling of the decay vertex. To account for
the lifetime of the dark matter in our universe, its decay must be very strongly suppressed, or forbidden.

For the case of the SM particles, existence of stable particles is ensured by the symmetry. Electron
is the lightest charged particle and electronic charge is conserved by the gauge symmetry. Proton is the
lightest bound state of quarks. There are no interaction to break proton in the SM, because number of
quark is conserved for interaction with the gauge bosons or the Higgs boson, and direct interaction with
electron is forbidden by the gauge symmetry. It is possible to conserve the Baryon number 1/3 to the
quarks in the SM, and this reflects the fact that proton is stable. To consider the particle model involving
the stable (or long-lived) dark matter, we must introduce new symmetry to protect the dark matter from
decaying.

Another puzzle of the SM is the hyper-charge assignments of the fermions. In the first glance,
it is not easy to find the rules to assign the charge to the SM matters. But, it fits very nicely to the
representation of a SU(5) group, where SU(3)⇥ SU(2)⇥ U(1) generators are embedded as

T a
SU(3) =

✓

�a
0

0 0

◆

T i
SU(2) =

✓

0 0

0 �i

◆

TU(1) =

✓ �1
313 0

0

1
212

◆

. (1)

Here, �a and �i are the SU(3) and SU(2) generators, 13 and 12 are 3 ⇥ 3 or 2 ⇥ 2 unit matrix, and
TSU(3), TSU(2), TU(1) satisfy the commutation relations of SU(3), SU(2), and U(1) generators. Under
this generator assignment, 5⇤ and 10 representations of SU(5) have a charge assignment as

5⇤ =

✓

(3

⇤, 1)1/3
(1, 2)�1/2

◆

, (2)

while 10 representation is decomposed into (3, 2)1/6 � (3

⇤, 1)�2/3 � (1, 1)1 which reside in the 5 ⇥ 5

antisymmetric matrix as

10 =

✓

(3

⇤, 1)�2/3 (3, 2)1/6
⇤ (1, 1)1

◆

. (3)

This suggests that SU(3) ⇥ SU(2) ⇥ U(1) symmetry of the SM can be unified into the SU(5) gauge
symmetry. To realize this, the SM three gauge couplings must unify at the short distance, so that the
SU(5) symmetry is recovered above that scale. The gauge couplings at the short distance is calculated
by utilizing the SM renormalization group equations from the low energy inputs. They do not unify for
the particle content of the SM, therefore to realize the idea of GUT, new set of particles are needed.
We will see a successful gauge coupling unification is realized in the Supersymmetric model in the next
section.

2 Supersymmetry
Supersymmety is the symmetry exchanging bosons into fermion, and fermions into bosons. The genera-
tors of the supersymmetric transformation satisfy the following anti-commutation relations

n

Q↵, ¯Q�̇

o

= 2�µ

↵,�̇
Pµ (4)

Here Q is a spin 1/2 and mass dimension 1/2 operator and ↵ and ˙� (= 1, 2) are the spin indices of chiral
and anti-chiral fermions, and �µ

= (1,�i
) is the Pauli matrices.

This anti-commutation relation can be reduced for any massive eigenstate |ai by taking the rest
frame Pµ|ai = ma�0µ|ai as follows:

n

Q↵, ¯Q�̇

o

= 2�↵,�̇ma. (5)
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Table 1: Particle content of the Minimal Supersymmetric Standard Model.

represenations quark squark
(3, 2)1/6 qL = (u, d)L q̃L = (ũL, ˜dL)

(3

⇤, 1)�2/3 ucR (ũR)
c

(3

⇤, 1)1/3 (dR)
c

(

˜dR)
c

lepton slepton
(1, 2)1/2 lL = (⌫, e)L q̃L = (⌫̃L, ẽL)

(1, 1)1 (eR)
c

(ẽR)
c

Higgsino Higgs
(1, 2)�1/2 (

˜H0
1 ,

˜H�
1 ) (H0

1 , H
�
1 )

(1, 2)1/2 (

˜H+
2 , ˜H0

2 ) (H+
2 , H0

2 )

spin 1/2 spin 1
(8, 1)0 ˜G (gluino) Gµ

(1, 3)0 ˜W (wino) Wµ

(1, 1)0 ˜B (bino) Bµ

The relation is same as that of a two-fermion system in quantum mechanics. One can construct an
irreducible representation of this algebra starting from a state which annihilates any ¯Qi. Suppose the
state is spin 0, |0i, all possible states are generated as follows;

|0i ! Q1|0i, Q2|0i ! Q1Q2|0i. (6)

Because Q1Q1 =Q2Q2 = 0, no more state can be obtained by multiplying the generator Qi. Two spin 0
states and two spin 1/2 states are obtained. These states form a SUSY multiplet, and the spin 0 states are
the superpartners of the spin 1/2 states and vise versa. Because this multiplet contains spin 1/2 states,
we can regard this as a matter multiplet.

Starting from a spin 1/2 state annihilating ¯Q one gets two spin 1/2 fermion states, a spin 1 massive
bosonic states and a spin 0 bosonic state, namely 4 fermion degrees of freedom and 4 bosonic degrees
of freedom. This may be regarded as two chiral fermions, one massive gauge boson and one massive
Higgs boson. Repeating similar analysis to the massless particles, one obtains states with helicity h = �
and � + 1/2. If � = 1/2, a massless gauge boson and its superpartner fermion make a supersymmetric
multiplet. The number of bosonic degrees of freedom is the same as that of fermionic degrees of freedom
in this theory.

All states in the above multiplet have the same mass, which looks irrelevant for describing real
particles, but it is known that such mass degeneracy is removed by spontaneous supersymmetry breaking.
Supersymmetry breaking is discussed in the next section.

The minimal supersymmetric standard model (MSSM) is an extension of the SM that has a super-
symmetry in the limit where all particle masses are ignored. The model is thought to be an effective the-
ory of a fully supersymmetic theory. Due to the spontaneous supersymmetry breaking of the full theory,
the superparters of the SM particles receive a mass much higher than the SM particles. A superpartner of
a fermion is called sfermion and it is a spin 0 particle. A superpartner of a gauge boson is called gaugino
and has spin 1/2. A Higgs boson superpartner is called a higgsino and has spin 1/2. The particle content
of the MSSM is given in Table 2. The SM particles and their superpartners have same charge, because
the generator of supersymmetric transformation Q commutes with the SM SU(3)⇥SU(2)⇥U(1) trans-
formation. The number of Higgs doublets is two in the MSSM because one should add two Higgsinos,
chiral fermions with charge (1, 2)±1/2 in the SM because of a condition of anomaly cancellation.

As one can see from Table 2, the number of particles are doubled in the MSSM. The supersymme-
try specifies all dimensionless couplings of interactions of new particles, such as four point interaction of
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• Starting from a 1/2 spin state ⇒ 
two spin 1/2 fermion states 
one spin 1 massive bosonic state 
one spin 0 massive bosonic state 
i.e. two chiral fermions, one massive boson,  
one massive Higgs boson

• Repeating analysis for massless particles ⇒ 
states with helicity                ,  
if                 ⇒ 
one massless gauge boson and its superpartner 
fermion

49

h = � h = �+ 1/2
� = 1/2



Superpartners

• SUSY relates bosons and 
fermions, arranged in 
supermultiplets

• Superpartners have spins 
differing by 1/2

• [QSUSY, Qinternal]=0 
Qinternal = charge, colour, 
isospin, etc  
 
We know all SUSY gauge 
interactions

• quarks ⟷ squarks 
leptons ⟷ sleptons 
W, Z    ⟷ Wino, Zino 
photon ⟷ photino 
gluon    ⟷ gluino

• If the symmetry is exact 
they are mass degenerate 
 
Predictive power 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• In a renormalizable SUSY theory masses and 
interactions are determined by their gauge 
transformations and the super potential W 
 

•      are the superfields,      parameter that is a gauge 
singlet (absent in the MSSM),        is a mass parameter 
and        are the Yukawa couplings                                    
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Figure 3.1: The dimensionless non-gauge interaction vertices in a supersymmetric theory: (a) scalar-
fermion-fermion Yukawa interaction yijk, (b) the complex conjugate interaction interaction yijk, and
(c) quartic scalar interaction yijny∗kln.

the mass dimension of a chiral superfield are the same as that of its scalar component. In the superfield
formulation, one writes instead of eq. (3.47)

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (3.77)

which implies exactly the same physics. The derivation of all of our preceding results can be obtained
somewhat more elegantly using superfield methods, which have the advantage of making invariance
under supersymmetry transformations manifest by defining the Lagrangian in terms of integrals over
a “superspace” with fermionic as well as ordinary commuting coordinates. We have avoided this extra
layer of notation on purpose, in favor of the more pedestrian, but more familiar and accessible, compo-
nent field approach. The latter is at least more appropriate for making contact with phenomenology in
a universe with supersymmetry breaking. The only (occasional) use we will make of superfield notation
is the purely cosmetic one of following the common practice of specifying superpotentials like eq. (3.77)
rather than (3.47). The specification of the superpotential is really a code for the terms that it implies
in the Lagrangian, so the reader may feel free to think of the superpotential either as a function of the
scalar fields φi or as the same function of the superfields Φi.

Given the supermultiplet content of the theory, the form of the superpotential is restricted by the
requirement of gauge invariance [see eq. (3.73)]. In any given theory, only a subset of the parameters
Li, M ij, and yijk are allowed to be non-zero. The parameter Li is only allowed if Φi is a gauge singlet.
(There are no such chiral supermultiplets in the MSSM with the minimal field content.) The entries
of the mass matrix M ij can only be non-zero for i and j such that the supermultiplets Φi and Φj

transform under the gauge group in representations that are conjugates of each other. (In the MSSM
there is only one such term, as we will see.) Likewise, the Yukawa couplings yijk can only be non-zero
when Φi, Φj, and Φk transform in representations that can combine to form a singlet.

The interactions implied by the superpotential eq. (3.77) (with Li = 0) were listed in eqs. (3.50),
(3.51), and are shown† in Figures 3.1 and 3.2. Those in Figure 3.1 are all determined by the dimen-
sionless parameters yijk. The Yukawa interaction in Figure 3.1a corresponds to the next-to-last term
in eq. (3.51). For each particular Yukawa coupling of φiψjψk with strength yijk, there must be equal
couplings of φjψiψk and φkψiψj, since yijk is completely symmetric under interchange of any two of
its indices as shown in section 3.2. The arrows on the fermion and scalar lines point in the direction
for propagation of φ and ψ and opposite the direction of propagation of φ∗ and ψ†. Thus there is also
a vertex corresponding to the one in Figure 3.1a but with all arrows reversed, corresponding to the
complex conjugate [the last term in eq. (3.51)]. It is shown in Figure 3.1b. There is also a dimension-
less coupling for φiφjφ∗kφ∗l, with strength yijny∗kln, as required by supersymmetry [see the last term in
eq. (3.50)]. The relationship between the Yukawa interactions in Figures 3.1a,b and the scalar interac-

†Here, the auxiliary fields have been eliminated using their equations of motion (“integrated out”). One could instead
give Feynman rules that include the auxiliary fields, or directly in terms of superfields on superspace, although this is
usually less useful in practical phenomenological applications.
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SUSY breaking

• No spartners with 
masses equal to their 
partners found so...

• SUSY must be broken

• Soft symmetry 
breaking → solution to 
the hierarchy problem

• Soft terms might be 
related in ways we do 
not know → 
dynamical SUSY 
breaking
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SUSY breaking

• Dynamical breaking of SUSY unknown

• Spontaneous symmetry breaking through vevs of F 
and D terms → bad phenomenology, FCNC, CP 
violation

• Soft SUSY breaking  terms that break susy explicitly:  
they do not introduce ờ2 corrections

• Lots of terms than can in principle be there... > 120
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Soft breaking terms

• The Lagrangian with soft breaking terms is 

•      are gauging masses (Wino, Bino, Zino)

•     bilinear mass scalar terms

•       trilinear scalar terms

•     tadpoles, absent if no gauge singlets

• Free of quadratic divergences
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3.3f; any of these three vertices may be obtained from any other (up to a factor of
√

2) by replacing two
of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which is
just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in the
Lagrangian [the second term in the second line in eq. (3.72)]. Finally in Figure 3.3i we have a scalar
quartic interaction vertex [the last term in eq. (3.75)], which is also determined by the gauge coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 5.1.

4 Soft supersymmetry breaking interactions

A realistic phenomenological model must contain supersymmetry breaking. From a theoretical per-
spective, we expect that supersymmetry, if it exists at all, should be an exact symmetry that is broken
spontaneously. In other words, the underlying model should have a Lagrangian density that is invari-
ant under supersymmetry, but a vacuum state that is not. In this way, supersymmetry is hidden at
low energies in a manner analogous to the fate of the electroweak symmetry in the ordinary Standard
Model.

Many models of spontaneous symmetry breaking have indeed been proposed and we will mention
the basic ideas of some of them in section 6. These always involve extending the MSSM to include
new particles and interactions at very high mass scales, and there is no consensus on exactly how this
should be done. However, from a practical point of view, it is extremely useful to simply parameterize
our ignorance of these issues by just introducing extra terms that break supersymmetry explicitly
in the effective MSSM Lagrangian. As was argued in the Introduction, the supersymmetry-breaking
couplings should be soft (of positive mass dimension) in order to be able to naturally maintain a
hierarchy between the electroweak scale and the Planck (or any other very large) mass scale. This
means in particular that dimensionless supersymmetry-breaking couplings should be absent.

The possible soft supersymmetry-breaking terms in the Lagrangian of a general theory are

Lsoft = −
(

1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c. − (m2)ijφ

j∗φi, (4.1)

Lmaybe soft = −1

2
cjk
i φ

∗iφjφk + c.c. (4.2)

They consist of gaugino masses Ma for each gauge group, scalar squared-mass terms (m2)ji and bij ,

and (scalar)3 couplings aijk and cjk
i , and “tadpole” couplings ti. The last of these can only occur if

φi is a gauge singlet, and so is absent from the MSSM. One might wonder why we have not included
possible soft mass terms for the chiral supermultiplet fermions, like L = −1

2mijψiψj + c.c. Including
such terms would be redundant; they can always be absorbed into a redefinition of the superpotential
and the terms (m2)ij and cjk

i .
It has been shown rigorously that a softly broken supersymmetric theory with Lsoft as given by

eq. (4.1) is indeed free of quadratic divergences in quantum corrections to scalar masses, to all orders in
perturbation theory [53]. The situation is slightly more subtle if one tries to include the non-analytic
(scalar)3 couplings in Lmaybe soft. If any of the chiral supermultiplets in the theory are singlets under all

gauge symmetries, then non-zero cjk
i terms can lead to quadratic divergences, despite the fact that they

are formally soft. Now, this constraint need not apply to the MSSM, which does not have any gauge-
singlet chiral supermultiplets. Nevertheless, the possibility of cjk

i terms is nearly always neglected. The
real reason for this is that it is extremely difficult to construct any model of spontaneous supersymmetry
breaking in which the cjk

i are not negligibly small. There are also possible fermion mass mixing terms
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SSB terms

• Can be ~ 120 !!!!

• Not precisely reducing the number of parameters

• But… what we want is to describe Nature  
what is it telling us?

• Imposing absence of FCNC and CP violation 
reduces the number of parameters ~ 30
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R parity

• If the spartners are heavy, why don’t they decay?

• SUSY + multiplicative symmetry:  
R  parity 

• B = baryonic number, L = leptonic number, 
S = spin                                        

• R = 1 SM,  R = -1 SUSY

• SUSY may have exact or broken R: 
very different phenomenology
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Superpotential and soft breaking terms

• SUSY models, also MSSM, defined through its 
superpotential

• And its soft breaking terms

(a)

i j

(b)

i j

(c)

j k

i

(d)

Figure 5.1: Soft supersymmetry-breaking terms: (a) Gaugino mass Ma; (b) non-holomorphic
scalar squared mass (m2)ij ; (c) holomorphic scalar squared mass bij ; and (d) scalar cubic coupling

aijk.

of the scalars and gauginos in a theory, even if the gauge bosons and fermions in chiral supermultiplets
are massless (or relatively light). The gaugino masses Ma are always allowed by gauge symmetry. The
(m2)ij terms are allowed for i, j such that φi, φj∗ transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j, so every scalar
is eligible to get a mass in this way if supersymmetry is broken. The remaining soft terms may or may
not be allowed by the symmetries. The aijk, bij , and ti terms have the same form as the yijk, M ij ,
and Li terms in the superpotential [compare eq. (5.1) to eq. (3.2.15) or eq. (3.5.1)], so they will each
be allowed by gauge invariance if and only if a corresponding superpotential term is allowed.

The Feynman diagram interactions corresponding to the allowed soft terms in eq. (5.1) are shown
in Figure 5.1. For each of the interactions in Figures 5.1a,c,d there is another with all arrows reversed,
corresponding to the complex conjugate term in the Lagrangian. We will apply these general results
to the specific case of the MSSM in the next section.

6 The Minimal Supersymmetric Standard Model

In sections 3 and 5, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

6.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (6.1.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (6.1.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βϵαβ, where
ϵαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βϵαβ , where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .

The µ term in eq. (6.1.1) is the supersymmetric version of the Higgs boson mass in the Standard
Model. It is unique, because terms H∗

uHu or H∗
dHd are forbidden in the superpotential, which must be

holomorphic in the chiral superfields (or equivalently in the scalar fields) treated as complex variables,
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a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [75] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [76] can exist provided that they satisfy certain anomaly cancellation
conditions [77] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [78, 79], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [79]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [79, 80]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 11.1.

6.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 5, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
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−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ

† − d̃m2
d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu −m2

Hd
H∗

dHd − (bHuHd + c.c.) . (6.3.1)

In eq. (6.3.1), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (6.3.1) contains the (scalar)3

couplings [of the type aijk in eq. (5.1)]. Each of au, ad, ae is a complex 3× 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (6.3.1) consists of squark and slepton mass terms of the (m2)ji type
in eq. (5.1). Each of m2

Q, m
2
u, m

2
d
, m2

L, m
2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (6.3.1) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b
is the only squared-mass term of the type bij in eq. (5.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (6.3.2)

m2
Q, m

2
L, m

2
u, m

2
d
, m2

e , m
2
Hu

, m2
Hd

, b ∼ m2
soft, (6.3.3)

with a characteristic mass scale msoft that is not much larger than 103 GeV. The expression eq. (6.3.1)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (5.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [81] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

6.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (6.3.1) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [82]-[107].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 6.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃
∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.4.9)]. The result of calculating this diagram gives [84, 87], approximately,

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2

3.
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Figure 4.1: Soft supersymmetry-breaking terms: (a) Gaugino mass Ma; (b) non-analytic scalar squared
mass (m2)ij ; (c) analytic scalar squared mass bij; and (d) scalar cubic coupling aijk.

between gauginos and any chiral supermultiplets that happen to be in the adjoint representation of
a simple factor of the gauge group [54]. Since this does not occur in the MSSM with minimal field
content, I have neglected that possibility here for simplicity. Equation (4.1) is therefore usually taken
to be the general form of the soft supersymmetry-breaking Lagrangian. (See, however, refs. [54]-[56].)

Supersymmetry is indeed broken by Lsoft, because it involves only scalars and gauginos and not
their respective superpartners. In fact, the soft terms in Lsoft are capable of giving masses to all of
the scalars and gauginos in a theory, even if the gauge bosons and fermions in chiral supermultiplets
are massless (or relatively light). The gaugino masses Ma are always allowed by gauge symmetry. The
(m2)ij terms are allowed for i, j such that φi, φj∗ transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j, so every scalar
is eligible to get a mass in this way if supersymmetry is broken. The remaining soft terms may or may
not be allowed by the symmetries. The aijk, bij , and ti terms have the same form as the yijk, M ij ,
and Li terms in the superpotential [compare eq. (4.1) to eq. (3.47) or eq. (3.77)], so they will each be
allowed by gauge invariance if and only if a corresponding superpotential term is allowed.

The Feynman diagram interactions corresponding to the allowed soft terms in eq. (4.1) are shown
in Figure 4.1. For each of the interactions in Figures 4.1a,c,d there is another with all arrows reversed,
corresponding to the complex conjugate term in the Lagrangian. We will apply these general results
to the specific case of the MSSM in the next section.

5 The Minimal Supersymmetric Standard Model

In sections 3 and 4, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

5.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (5.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (5.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βϵαβ, where
ϵαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βϵαβ, where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .
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Figure 4.1: Soft supersymmetry-breaking terms: (a) Gaugino mass Ma; (b) non-analytic scalar squared
mass (m2)ij ; (c) analytic scalar squared mass bij; and (d) scalar cubic coupling aijk.

between gauginos and any chiral supermultiplets that happen to be in the adjoint representation of
a simple factor of the gauge group [54]. Since this does not occur in the MSSM with minimal field
content, I have neglected that possibility here for simplicity. Equation (4.1) is therefore usually taken
to be the general form of the soft supersymmetry-breaking Lagrangian. (See, however, refs. [54]-[56].)

Supersymmetry is indeed broken by Lsoft, because it involves only scalars and gauginos and not
their respective superpartners. In fact, the soft terms in Lsoft are capable of giving masses to all of
the scalars and gauginos in a theory, even if the gauge bosons and fermions in chiral supermultiplets
are massless (or relatively light). The gaugino masses Ma are always allowed by gauge symmetry. The
(m2)ij terms are allowed for i, j such that φi, φj∗ transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j, so every scalar
is eligible to get a mass in this way if supersymmetry is broken. The remaining soft terms may or may
not be allowed by the symmetries. The aijk, bij , and ti terms have the same form as the yijk, M ij ,
and Li terms in the superpotential [compare eq. (4.1) to eq. (3.47) or eq. (3.77)], so they will each be
allowed by gauge invariance if and only if a corresponding superpotential term is allowed.

The Feynman diagram interactions corresponding to the allowed soft terms in eq. (4.1) are shown
in Figure 4.1. For each of the interactions in Figures 4.1a,c,d there is another with all arrows reversed,
corresponding to the complex conjugate term in the Lagrangian. We will apply these general results
to the specific case of the MSSM in the next section.

5 The Minimal Supersymmetric Standard Model

In sections 3 and 4, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

5.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (5.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (5.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βϵαβ, where
ϵαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βϵαβ, where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .
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MSSM content
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗
R u†

R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields
are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

completely different reason: because of the structure of supersymmetric theories, only a Y = 1/2 Higgs
chiral supermultiplet can have the Yukawa couplings necessary to give masses to charge +2/3 up-type
quarks (up, charm, top), and only a Y = −1/2 Higgs can have the Yukawa couplings necessary to give
masses to charge −1/3 down-type quarks (down, strange, bottom) and to the charged leptons. We
will call the SU(2)L-doublet complex scalar fields with Y = 1/2 and Y = −1/2 by the names Hu and
Hd, respectively.† The weak isospin components of Hu with T3 = (1/2, −1/2) have electric charges
1, 0 respectively, and are denoted (H+

u , H0
u). Similarly, the SU(2)L-doublet complex scalar Hd has

T3 = (1/2, −1/2) components (H0
d , H−

d ). The neutral scalar that corresponds to the physical Standard
Model Higgs boson is in a linear combination of H0

u and H0
d ; we will discuss this further in section 7.1.

The generic nomenclature for a spin-1/2 superpartner is to append “-ino” to the name of the Standard
Model particle, so the fermionic partners of the Higgs scalars are called higgsinos. They are denoted
by H̃u, H̃d for the SU(2)L-doublet left-handed Weyl spinor fields, with weak isospin components H̃+

u ,
H̃0

u and H̃0
d , H̃−

d .
We have now found all of the chiral supermultiplets of a minimal phenomenologically viable exten-

sion of the Standard Model. They are summarized in Table 1.1, classified according to their transfor-
mation properties under the Standard Model gauge group SU(3)C ×SU(2)L ×U(1)Y , which combines
uL, dL and ν, eL degrees of freedom into SU(2)L doublets. Here we follow a standard convention, that
all chiral supermultiplets are defined in terms of left-handed Weyl spinors, so that the conjugates of
the right-handed quarks and leptons (and their superpartners) appear in Table 1.1. This protocol for
defining chiral supermultiplets turns out to be very useful for constructing supersymmetric Lagrangi-
ans, as we will see in section 3. It is also useful to have a symbol for each of the chiral supermultiplets
as a whole; these are indicated in the second column of Table 1.1. Thus, for example, Q stands for
the SU(2)L-doublet chiral supermultiplet containing ũL, uL (with weak isospin component T3 = 1/2),

and d̃L, dL (with T3 = −1/2), while u stands for the SU(2)L-singlet supermultiplet containing ũ∗
R, u†

R.
There are three families for each of the quark and lepton supermultiplets, Table 1.1 lists the first-family
representatives. A family index i = 1, 2, 3 can be affixed to the chiral supermultiplet names (Qi, ui, . . .)
when needed, for example (e1, e2, e3) = (e, µ, τ). The bar on u, d, e fields is part of the name, and does
not denote any kind of conjugation.

The Higgs chiral supermultiplet Hd (containing H0
d , H−

d , H̃0
d , H̃−

d ) has exactly the same Standard
Model gauge quantum numbers as the left-handed sleptons and leptons Li, for example (ν̃, ẽL, ν,
eL). Naively, one might therefore suppose that we could have been more economical in our assignment

†Other notations in the literature have H1, H2 or H,H instead of Hu, Hd. The notation used here has the virtue of
making it easy to remember which Higgs VEVs gives masses to which type of quarks.
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

by taking a neutrino and a Higgs scalar to be superpartners, instead of putting them in separate
supermultiplets. This would amount to the proposal that the Higgs boson and a sneutrino should be the
same particle. This attempt played a key role in some of the first attempts to connect supersymmetry to
phenomenology [5], but it is now known to not work. Even ignoring the anomaly cancellation problem
mentioned above, many insoluble phenomenological problems would result, including lepton-number
non-conservation and a mass for at least one of the neutrinos in gross violation of experimental bounds.
Therefore, all of the superpartners of Standard Model particles are really new particles, and cannot be
identified with some other Standard Model state.

The vector bosons of the Standard Model clearly must reside in gauge supermultiplets. Their
fermionic superpartners are generically referred to as gauginos. The SU(3)C color gauge interactions
of QCD are mediated by the gluon, whose spin-1/2 color-octet supersymmetric partner is the gluino. As
usual, a tilde is used to denote the supersymmetric partner of a Standard Model state, so the symbols
for the gluon and gluino are g and g̃ respectively. The electroweak gauge symmetry SU(2)L ×U(1)Y is
associated with spin-1 gauge bosons W+,W 0,W− and B0, with spin-1/2 superpartners W̃+, W̃ 0, W̃−

and B̃0, called winos and bino. After electroweak symmetry breaking, the W 0, B0 gauge eigenstates
mix to give mass eigenstates Z0 and γ. The corresponding gaugino mixtures of W̃ 0 and B̃0 are called
zino (Z̃0) and photino (γ̃); if supersymmetry were unbroken, they would be mass eigenstates with
masses mZ and 0. Table 1.2 summarizes the gauge supermultiplets of a minimal supersymmetric
extension of the Standard Model.

The chiral and gauge supermultiplets in Tables 1.1 and 1.2 make up the particle content of the
Minimal Supersymmetric Standard Model (MSSM). The most obvious and interesting feature of this
theory is that none of the superpartners of the Standard Model particles has been discovered as of
this writing. If supersymmetry were unbroken, then there would have to be selectrons ẽL and ẽR with
masses exactly equal to me = 0.511... MeV. A similar statement applies to each of the other sleptons
and squarks, and there would also have to be a massless gluino and photino. These particles would have
been extraordinarily easy to detect long ago. Clearly, therefore, supersymmetry is a broken symmetry
in the vacuum state chosen by Nature.

An important clue as to the nature of supersymmetry breaking can be obtained by returning
to the motivation provided by the hierarchy problem. Supersymmetry forced us to introduce two
complex scalar fields for each Standard Model Dirac fermion, which is just what is needed to enable a
cancellation of the quadratically divergent (Λ2

UV) pieces of eqs. (1.2) and (1.3). This sort of cancellation
also requires that the associated dimensionless couplings should be related (for example λS = |λf |2).
The necessary relationships between couplings indeed occur in unbroken supersymmetry, as we will
see in section 3. In fact, unbroken supersymmetry guarantees that the quadratic divergences in scalar
squared masses must vanish to all orders in perturbation theory.‡ Now, if broken supersymmetry is still
to provide a solution to the hierarchy problem even in the presence of supersymmetry breaking, then

‡A simple way to understand this is to recall that unbroken supersymmetry requires the degeneracy of scalar and
fermion masses. Radiative corrections to fermion masses are known to diverge at most logarithmically in any renormal-
izable field theory, so the same must be true for scalar masses in unbroken supersymmetry.

9
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Yukawa interactions

(a)  Yukawa top interaction

(b)  Yukawa stop_L,  Higgsino, top_R  interaction            

(c) Yukawa top_L, anti-stop_R, Higgsino  interaction                  

 • All have the same coupling
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tL t†R

H0
u

(a)

t̃L t†R

H̃0
u

(b)

tL t̃∗R

H̃0
u
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Figure 5.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.

The µ term in eq. (5.1) is the supersymmetric version of the Higgs boson mass in the Standard
Model. It is unique, because terms H∗

uHu or H∗
dHd are forbidden in the superpotential, which must be

analytic in the chiral superfields (or equivalently in the scalar fields) treated as complex variables, as
shown in section 3.2. We can also see from the form of eq. (5.1) why both Hu and Hd are needed in order
to give Yukawa couplings, and thus masses, to all of the quarks and leptons. Since the superpotential
must be analytic, the uQHu Yukawa terms cannot be replaced by something like uQH∗

d . Similarly,
the dQHd and eLHd terms cannot be replaced by something like dQH∗

u and eLH∗
u. The analogous

Yukawa couplings would be allowed in a general non-supersymmetric two Higgs doublet model, but are
forbidden by the structure of supersymmetry. So we need both Hu and Hd, even without invoking the
argument based on anomaly cancellation mentioned in the Introduction.

The Yukawa matrices determine the current masses and CKM mixing angles of the ordinary quarks
and leptons, after the neutral scalar components of Hu and Hd get VEVs. Since the top quark, bottom
quark and tau lepton are the heaviest fermions in the Standard Model, it is often useful to make an
approximation that only the (3, 3) family components of each of yu, yd and ye are important:

yu ≈

⎛

⎝
0 0 0
0 0 0
0 0 yt

⎞

⎠ , yd ≈

⎛

⎝
0 0 0
0 0 0
0 0 yb

⎞

⎠ , ye ≈

⎛

⎝
0 0 0
0 0 0
0 0 yτ

⎞

⎠ . (5.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpotential. It is
instructive to write the superpotential in terms of the separate SU(2)L weak isospin components
[Q3 = (t b), L3 = (ντ τ), Hu = (H+

u H0
u), Hd = (H0

d H−
d ), u3 = t, d3 = b, e3 = τ ], so:

WMSSM ≈ yt(ttH
0
u − tbH+

u ) − yb(btH
−
d − bbH0

d) − yτ (τντH
−
d − ττH0

d)

+µ(H+
u H−

d − H0
uH0

d). (5.3)

The minus signs inside the parentheses appear because of the antisymmetry of the ϵαβ symbol used to
tie up the SU(2)L indices. The other minus signs in eq. (5.1) were chosen so that the terms ytttH0

u,
ybbbH0

d , and yτττH0
d , which will become the top, bottom and tau masses when H0

u and H0
d get VEVs,

each have overall positive signs in eq. (5.3).
Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-

metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 5.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 5.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (5.3). For variety,

we have used tL and t†R in place of their synonyms t and t (see the discussion near the end of section
2). In Figure 5.1b, we have the coupling of the left-handed top squark t̃L to the neutral higgsino field
H̃0

u and right-handed top quark, while in Figure 5.1c the right-handed top anti-squark field (known

either as t̃ or t̃∗R depending on taste) couples to H̃0
u and tL. For each of the three interactions, there is

another with H0
u → H+

u and tL → −bL (with tildes where appropriate), corresponding to the second
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Gauge interactions

• Except for the third family, they are not very strong

• The ones proportional to gauge couplings dominate

• squark-quark-gaugino
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t̃L t̃∗L

H0
u H0∗

u

(b)

t̃∗R t̃R

H0
u H0∗

u

(c)

Figure 5.2: Some of the (scalar)4 interactions with strength proportional to y2
t .

g̃ q

q̃

(a)

W̃ qL, ℓL, H̃u, H̃d

q̃L, ℓ̃L, Hu, Hd

(b)

B̃ q, ℓ, H̃u, H̃d

q̃, ℓ̃, Hu, Hd

(c)

Figure 5.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

part of the first term in eq. (5.3). All of these interactions are required by supersymmetry to have
the same strength yt. These couplings are dimensionless and can be modified by the introduction of
soft supersymmetry breaking only through finite (and small) radiative corrections, so this equality of
interaction strengths is also a prediction of softly broken supersymmetry. A useful mnemonic is that
each of Figures 5.1a,b,c can be obtained from any of the others by changing two of the particles into
their superpartners.

There are also scalar quartic interactions with strength proportional to y2
t , as can be seen from

Figure 3.1c or the last term in eq. (3.50). Three of them are shown in Figure 5.2. Using eq. (3.50) and
eq. (5.3), one can see that there are five more, which can be obtained by replacing t̃L → b̃L and/or
H0

u → H+
u in each vertex. This illustrates the remarkable economy of supersymmetry; there are many

interactions determined by only a single parameter. In a similar way, the existence of all the other
quark and lepton Yukawa couplings in the superpotential eq. (5.1) leads not only to Higgs-quark-quark
and Higgs-lepton-lepton Lagrangian terms as in the ordinary Standard Model, but also to squark-
higgsino-quark and slepton-higgsino-lepton terms, and scalar quartic couplings [(squark)4, (slepton)4,
(squark)2(slepton)2, (squark)2(Higgs)2, and (slepton)2(Higgs)2]. If needed, these can all be obtained
in terms of the Yukawa matrices yu, yd, and ye as outlined above.

However, the dimensionless interactions determined by the superpotential are usually not the most
important ones of direct interest for phenomenology. This is because the Yukawa couplings are already
known to be very small, except for those of the third family (top, bottom, tau). Instead, production
and decay processes for superpartners in the MSSM are typically dominated by the supersymmetric
interactions of gauge-coupling strength, as we will explore in more detail in sections 8 and 9. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles
are determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.72). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃ + c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 5.3a.
In Figures 5.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
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fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 5.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 7.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.75), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 7.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.51), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃0

d ) + c.c., (5.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (5.5)

Since eq. (5.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
namely the supersymmetry-respecting mass µ and the supersymmetry-breaking soft mass terms. Yet
the observed value for the electroweak breaking scale suggests that without miraculous cancellations,
both of these apparently unrelated mass scales should be within an order of magnitude or so of 100
GeV. This puzzle is called “the µ problem”. Several different solutions to the µ problem have been
proposed, involving extensions of the MSSM of varying intricacy. They all work in roughly the same
way; the µ term is required or assumed to be absent at tree-level before symmetry breaking, and then
it arises from the VEV(s) of some new field(s). These VEVs are in turn determined by minimizing a
potential that depends on soft supersymmetry-breaking terms. In this way, the value of the effective
parameter µ is no longer conceptually distinct from the mechanism of supersymmetry breaking; if we
can explain why msoft ≪ MP, we will also be able to understand why µ is of the same order. In section
10.2 we will study one such mechanism. Some other attractive solutions for the µ problem are proposed
in refs. [57]-[59]. From the point of view of the MSSM, however, we can just treat µ as an independent
parameter.

The µ-term and the Yukawa couplings in the superpotential eq. (5.1) combine to yield (scalar)3

couplings [see the second and third terms on the right-hand side of eq. (3.50)] of the form

Lsupersymmetric (scalar)3 = µ∗(ũyuũH0∗
d + d̃ydd̃H0∗

u + ẽyeẽH
0∗
u

+ũyud̃H−∗
d + d̃ydũH+∗

u + ẽyeν̃H
+∗
u ) + c.c. (5.6)

Figure 5.4 shows some of these couplings, proportional to µ∗yt, µ∗yb, and µ∗yτ respectively. These play
an important role in determining the mixing of top squarks, bottom squarks, and tau sleptons, as we
will see in section 7.4.

33

fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 5.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 7.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.75), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 7.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.51), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃0

d ) + c.c., (5.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (5.5)

Since eq. (5.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
namely the supersymmetry-respecting mass µ and the supersymmetry-breaking soft mass terms. Yet
the observed value for the electroweak breaking scale suggests that without miraculous cancellations,
both of these apparently unrelated mass scales should be within an order of magnitude or so of 100
GeV. This puzzle is called “the µ problem”. Several different solutions to the µ problem have been
proposed, involving extensions of the MSSM of varying intricacy. They all work in roughly the same
way; the µ term is required or assumed to be absent at tree-level before symmetry breaking, and then
it arises from the VEV(s) of some new field(s). These VEVs are in turn determined by minimizing a
potential that depends on soft supersymmetry-breaking terms. In this way, the value of the effective
parameter µ is no longer conceptually distinct from the mechanism of supersymmetry breaking; if we
can explain why msoft ≪ MP, we will also be able to understand why µ is of the same order. In section
10.2 we will study one such mechanism. Some other attractive solutions for the µ problem are proposed
in refs. [57]-[59]. From the point of view of the MSSM, however, we can just treat µ as an independent
parameter.

The µ-term and the Yukawa couplings in the superpotential eq. (5.1) combine to yield (scalar)3

couplings [see the second and third terms on the right-hand side of eq. (3.50)] of the form

Lsupersymmetric (scalar)3 = µ∗(ũyuũH0∗
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• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [64] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [65] can exist provided that they satisfy certain anomaly cancellation
conditions [66] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [67, 68], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [68]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [68, 69]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 10.1.

5.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 4, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃† m2
Q Q̃ − L̃† m2

L L̃ − ũm2
u ũ

† − d̃m2
d

d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + c.c.) . (5.12)

In eq. (5.12), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (5.12) contains the (scalar)3

couplings [of the type aijk in eq. (4.1)]. Each of au, ad, ae is a complex 3 × 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (5.12) consists of squark and slepton mass terms of the (m2)ji type
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Here nearly degenerate squarks with mass mq̃ are assumed for simplicity, with m2
s̃∗Rd̃R

= (m2
d
)21 treated

as a perturbation. The same limit applies when m2
s̃∗Rd̃R

is replaced by m2
s̃∗Ld̃L

= (m2
Q)21, in a basis

corresponding to the down-type quark mass eigenstates. An even more striking limit applies to the
combination of both types of flavor mixing when they are comparable in size, from diagrams including
fig. 5.7b. The numerical constraint is [86]:

|Re[m2
s̃∗Rd̃R

m2
s̃∗Ld̃L

]|1/2

m2
q̃

<
(

mq̃

500 GeV

)
×

⎧
⎪⎪⎨

⎪⎪⎩

0.0008 for mg̃ = 0.5mq̃,

0.0010 for mg̃ = mq̃,

0.0013 for mg̃ = 2mq̃.

(5.17)

An off-diagonal contribution from ad would cause flavor mixing between left-handed and right-handed
squarks, just as discussed above for sleptons, resulting in a strong constraint from diagrams like fig. 5.7c.
More generally, limits on ∆mK and ϵ and ϵ′/ϵ appearing in the neutral kaon effective Hamiltonian
severely restrict the amounts of d̃L,R, s̃L,R squark mixings (separately and in various combinations),
and associated CP-violating complex phases, that one can tolerate in the soft squared masses.

Weaker, but still interesting, constraints come from the D0,D
0

system, which limits the amounts

of ũ, c̃ mixings from m2
u, m2

Q and au. The B0
d , B

0
d and B0

s , B
0
s systems similarly limit the amounts of

d̃, b̃ and s̃, b̃ squark mixings from soft supersymmetry-breaking sources. More constraints follow from
rare ∆F = 1 meson decays, notably those involving the parton-level processes b → sγ and b → sℓ+ℓ−

and c → uℓ+ℓ− and s → de+e− and s → dνν̄, all of which can be mediated by flavor mixing in
soft supersymmetry breaking. There are also strict constraints on CP-violating phases in the gaugino
masses and (scalar)3 soft couplings following from limits on the electric dipole moments of the neutron
and electron [74]. Detailed limits can be found in the literature [71]-[96], but the essential lesson from
experiment is that the soft supersymmetry-breaking Lagrangian cannot be arbitrary or random.

All of these potentially dangerous flavor-changing and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking is suitably “universal”. Con-
sider an idealized limit in which the squark and slepton squared-mass matrices are flavor-blind, each
proportional to the 3 × 3 identity matrix in family space:

m2
Q = m2

Q1, m2
u = m2

u1, m2
d

= m2
d
1, m2

L = m2
L1, m2

e = m2
e1. (5.18)

Then all squark and slepton mixing angles are rendered trivial, because squarks and sleptons with the
same electroweak quantum numbers will be degenerate in mass and can be rotated into each other at
will. Supersymmetric contributions to flavor-changing neutral current processes will therefore be very
small in such an idealized limit, up to mixing induced by au, ad, ae. Making the further assumption
that the (scalar)3 couplings are each proportional to the corresponding Yukawa coupling matrix,

au = Au0 yu, ad = Ad0 yd, ae = Ae0 ye, (5.19)

will ensure that only the squarks and sleptons of the third family can have large (scalar)3 couplings.
Finally, one can avoid disastrously large CP-violating effects by assuming that the soft parameters
do not introduce new complex phases. This is automatic for m2

Hu
and m2

Hd
, and for m2

Q, m2
u, etc. if

eq. (5.18) is assumed; if they were not real numbers, the Lagrangian would not be real. One can also
fix µ in the superpotential and b in eq. (5.12) to be real, by appropriate phase rotations of fermion and
scalar components of the Hu and Hd supermultiplets. If one then assumes that

arg(M1), arg(M2), arg(M3), arg(Au0), arg(Ad0), arg(Ae0) = 0 or π, (5.20)

then the only CP-violating phase in the theory will be the usual CKM phase found in the ordinary
Yukawa couplings. Together, the conditions eqs. (5.18)-(5.20) make up a rather weak version of what is
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will ensure that only the squarks and sleptons of the third family can have large (scalar)3 couplings.
Finally, one can avoid disastrously large CP-violating effects by assuming that the soft parameters
do not introduce new complex phases. This is automatic for m2

Hu
and m2

Hd
, and for m2

Q, m
2
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eq. (6.4.4) is assumed; if they were not real numbers, the Lagrangian would not be real. One can also
fix µ in the superpotential and b in eq. (6.3.1) to be real, by appropriate phase rotations of fermion
and scalar components of the Hu and Hd supermultiplets. If one then assumes that

Im(M1), Im(M2), Im(M3), Im(Au0), Im(Ad0), Im(Ae0) = 0, (6.4.6)

then the only CP-violating phase in the theory will be the usual CKM phase found in the ordinary
Yukawa couplings. Together, the conditions eqs. (6.4.4)-(6.4.6) make up a rather weak version of what
is often called the hypothesis of soft supersymmetry-breaking universality. The MSSM with these flavor-
and CP-preserving relations imposed has far fewer parameters than the most general case. Besides the
usual Standard Model gauge and Yukawa coupling parameters, there are 3 independent real gaugino
masses, only 5 real squark and slepton squared mass parameters, 3 real scalar cubic coupling parameters,
and 4 Higgs mass parameters (one of which can be traded for the known electroweak breaking scale).

There are at least three other possible types of explanations for the suppression of flavor violation in
the MSSM that could replace the universality hypothesis of eqs. (6.4.4)-(6.4.6). They can be referred to
as the “irrelevancy”, “alignment”, and “R-symmetry” hypotheses for the soft masses. The “irrelevancy”
idea is that the sparticles masses are extremely heavy, so that their contributions to flavor-changing and
CP-violating diagrams like Figures 6.7a,b are suppressed, as can be seen for example in eqs. (6.4.1)-
(6.4.3). In practice, however, if there is no flavor-blind structure, the degree of suppression needed
typically requires msoft much larger than 1 TeV for at least some of the scalar masses. This seems to
go directly against the motivation for supersymmetry as a cure for the hierarchy problem as discussed
in the Introduction. Nevertheless, it has been argued that this is a sensible possibility [109, 110].
The fact that the LHC searches conducted so far have eliminated many models with lighter squarks
anyway tends to make these models seem more attractive. Perhaps a combination of approximate flavor
blindness and heavy superpartner masses is the true explanation for the suppression of flavor-violating
effects.

The “alignment” idea is that the squark squared-mass matrices do not have the flavor-blindness
indicated in eq. (6.4.4), but are arranged in flavor space to be aligned with the relevant Yukawa matrices
in just such a way as to avoid large flavor-changing effects [59, 111]. The alignment models typically
require rather special flavor symmetries.

The third possibility is that the theory is (approximately) invariant under a continuous U(1)R
symmetry [55]. This requires that the MSSM is supplemented, as in [62], by additional chiral super-
multiplets in the adjoint representations of SU(3)c, SU(2)L, and U(1)Y , as well as an additional pair
of Higgs chiral supermultiplets. The gaugino masses in this theory are purely Dirac, of the type in
eq. (5.3), and the couplings au, ad, and ae are absent. This implies a very efficient suppression of flavor-
changing effects [55, 65], even if the squark and slepton mass eigenstates are light, non-degenerate, and
have large mixings in the basis determined by the Standard Model quark and lepton mass eigenstates.
This can lead to unique and intriguing collider signatures [55, 67]. However, we will not consider these
possibilities further here.

The soft-breaking universality relations eqs. (6.4.4)-(6.4.6), or stronger (more special) versions of
them, can be presumed to be the result of some specific model for the origin of supersymmetry breaking,
although there is no consensus among theorists as to what the specific model should actually be. In
any case, they are indicative of an assumed underlying simplicity or symmetry of the Lagrangian at
some very high energy scale Q0. If we used this Lagrangian to compute masses and cross-sections and
decay rates for experiments at ordinary energies near the electroweak scale, the results would involve

64



Origin of SSB terms?

68

(Hidden sector)
(Visible sector)

Supersymmetry

breaking origin
     MSSMFlavor-blind

interactions

Figure 6.1: The presumed schematic structure for supersymmetry breaking.

visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in principle,
achievable. As a bonus, if the mediating interactions are flavor-blind, then the soft terms appearing in
the MSSM will automatically obey conditions like eqs. (5.18), (5.19) and (5.20).

There have been two main competing proposals for what the mediating interactions might be.
The first (and historically the more popular) is that they are gravitational. More precisely, they are
associated with the new physics, including gravity, that enters near the Planck scale. In this “gravity-
mediated”, or Planck-scale-mediated supersymmetry breaking (PMSB) scenario, if supersymmetry is
broken in the hidden sector by a VEV ⟨F ⟩, then the soft terms in the visible sector should be roughly

msoft ∼ ⟨F ⟩/MP, (6.25)

by dimensional analysis. This is because we know that msoft must vanish in the limit ⟨F ⟩ → 0 where
supersymmetry is unbroken, and also in the limit MP → ∞ (corresponding to GNewton → 0) in which
gravity becomes irrelevant. For msoft of order a few hundred GeV, one would therefore expect that
the scale associated with the origin of supersymmetry breaking in the hidden sector should be roughly√
⟨F ⟩ ∼ 1010 or 1011 GeV. Another possibility is that the supersymmetry breaking order parameter is

a gaugino condensate ⟨0|λaλb|0⟩ = δabΛ3 ̸= 0. If the composite field λaλb is part of an auxiliary field F
for some (perhaps composite) chiral superfield, then by dimensional analysis we expect supersymmetry
breaking soft terms of order

msoft ∼ Λ3/M2
P, (6.26)

with, effectively, ⟨F ⟩ ∼ Λ3/MP. In that case, the scale associated with dynamical supersymmetry
breaking should be more like Λ ∼ 1013 GeV.

A second possibility is that the flavor-blind mediating interactions for supersymmetry breaking are
the ordinary electroweak and QCD gauge interactions. In this gauge-mediated supersymmetry breaking
(GMSB) scenario, the MSSM soft terms come from loop diagrams involving some messenger particles.
The messengers are new chiral supermultiplets that couple to a supersymmetry-breaking VEV ⟨F ⟩,
and also have SU(3)C × SU(2)L × U(1)Y interactions, which provide the necessary connection to the
MSSM. Then, using dimensional analysis, one estimates for the MSSM soft terms

msoft ∼
αa

4π

⟨F ⟩
Mmess

(6.27)

where the αa/4π is a loop factor for Feynman diagrams involving gauge interactions, and Mmess is a
characteristic scale of the masses of the messenger fields. So if Mmess and

√
⟨F ⟩ are roughly comparable,

then the scale of supersymmetry breaking can be as low as about
√
⟨F ⟩ ∼ 104 GeV (much lower than

in the gravity-mediated case!) to give msoft of the right order of magnitude.

6.5 The goldstino and the gravitino

As shown in section 6.1, the spontaneous breaking of global supersymmetry implies the existence of a
massless Weyl fermion, the goldstino. The goldstino is the fermionic component of the supermultiplet
whose auxiliary field obtains a VEV.
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(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

in eq. (4.1). Each of m2
Q, m2

u, m2
d
, m2

L, m2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (5.12) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (4.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (5.13)

m2
Q, m2

L, m2
u, m2

d
, m2

e , m2
Hu

, m2
Hd

, b ∼ m2
soft, (5.14)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (5.12)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (4.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [70] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

5.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (5.12) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [71]-[96].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 5.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.72)]. The result of calculating this diagram gives [73, 76], approximately,
§The parameter called b here is often seen elsewhere as Bµ or m2

12 or m2
3.
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large MP, are:

W = WMSSM − 1

MP

(
1

6
yXijkXΦiΦjΦk +

1

2
µXijXΦiΦj

)
+ . . . , (7.6.1)

K = Φ∗iΦi +
1

MP
(nj

iX + nj
iX

∗)Φ∗iΦj −
1

M2
P

kjiXX∗Φ∗iΦj + . . . , (7.6.2)

fab =
δab
g2a

(
1− 2

MP
faX + . . .

)
. (7.6.3)

Here Φi represent the chiral superfields of the MSSM or an extension of it, and yXijk, kji , n
j
i , n

j
i and

fa are dimensionless couplings while µXij has the dimension of mass. The leading term in the Kähler
potential is chosen to give canonically normalized kinetic terms. The matrix kji must be Hermitian, and
nj
i = (ni

j)
∗, in order for the Lagrangian to be real. To find the resulting soft supersymmetry breaking

terms in the low-energy effective theory, one can apply the superspace formalism of section 4, treating
X as a “spurion” by making the replacements:

X → θθF, X∗ → θ†θ†F ∗, (7.6.4)

where F denotes ⟨FX ⟩. The resulting supersymmetry-breaking Lagrangian, after integrating out the
auxiliary fields in Φi, is:

Lsoft = − F

2MP
faλ

aλa − F

6MP
yXijkφiφjφk −

F

2MP
µXijφiφj −

F

MP
nj
iφjW

i
MSSM + c.c.

− |F |2

M2
P

(kij + ni
pn

p
j)φ

∗jφi, (7.6.5)

where φi and λa are the scalar and gaugino fields in the MSSM sector. Now if one assumes that√
F ∼ 1010 or 1011 GeV, then eq. (7.6.5) has the same form as eq. (5.1), with MSSM-sector soft terms

of order msoft ∼ F/MP, perhaps of order a few hundred GeV. In particular, if we write the visible
sector superpotential as

WMSSM =
1

6
yijkΦiΦjΦk +

1

2
µijΦiΦj, (7.6.6)

then the soft terms in that sector, in the notation of eq. (5.1), are:

Ma =
F

MP
fa, (7.6.7)

aijk =
F

MP
(yXijk + ni

py
pjk + nj

py
pik + nk

py
pij), (7.6.8)

bij =
F

MP
(µXij + ni

pµ
pj + nj

pµ
pi), (7.6.9)

(m2)ij =
|F |2

M2
P

(kij + ni
pn

p
j ). (7.6.10)

Note that couplings of the form Lmaybe soft in eq. (5.2) do not arise from eq. (7.6.5). Although they
actually are expected to occur, the largest possible sources for them are non-renormalizable Kähler
potential terms, which lead to:

L = − |F |2

M3
P

xjki φ
∗iφjφk + c.c., (7.6.11)
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where xjki is dimensionless. This explains why, at least within this model framework, the couplings cjki
in eq. (5.2) are of order |F |2/M3

P ∼ m2
soft/MP, and therefore negligible.

In principle, the parameters fa, kij, n
j
i , y

Xijk and µXij ought to be determined by the fundamental
underlying theory. The familiar flavor blindness of gravity expressed in Einstein’s equivalence principle
does not, by itself, tell us anything about their form. Therefore, the requirement of approximate
flavor blindness in Lsoft is a new assumption in this framework, and is not guaranteed without further
structure. Nevertheless, it has historically been popular to make a dramatic simplification by assuming a
“minimal” form for the normalization of kinetic terms and gauge interactions in the non-renormalizable
Lagrangian. Specifically, it is often assumed that there is a common fa = f for the three gauginos, that
kji = kδji and nj

i = nδji are the same for all scalars, with k and n real, and that the other couplings are
proportional to the corresponding superpotential parameters, so that yXijk = αyijk and µXij = βµij

with universal real dimensionless constants α and β. Then the soft terms in LMSSM
soft are all determined

by just four parameters:

m1/2 = f
⟨F ⟩
MP

, m2
0 = (k + n2)

|⟨F ⟩|2

M2
P

, A0 = (α+ 3n)
⟨F ⟩
MP

, B0 = (β + 2n)
⟨F ⟩
MP

. (7.6.12)

In terms of these, the parameters appearing in eq. (6.3.1) are:

M3 = M2 = M1 = m1/2, (7.6.13)

m2
Q = m2

u = m2
d
= m2

L = m2
e = m2

0 1, m2
Hu

= m2
Hd

= m2
0, (7.6.14)

au = A0yu, ad = A0yd, ae = A0ye, (7.6.15)

b = B0µ, (7.6.16)

at a renormalization scale Q ≈ MP. It is a matter of some controversy whether the assumptions going
into this parameterization are well-motivated on purely theoretical grounds, but from a phenomeno-
logical perspective they are clearly very nice. This framework successfully evades the most dangerous
types of flavor changing and CP violation as discussed in section 6.4. In particular, eqs. (7.6.14) and
(7.6.15) are just stronger versions of eqs. (6.4.4) and (6.4.5), respectively. If m1/2, A0 and B0 all have
the same complex phase, then eq. (6.4.6) will also be satisfied.

Equations (7.6.13)-(7.6.16) also have the virtue of being extraordinarily predictive, at least in
principle. [Of course, eq. (7.6.16) is content-free unless one can relate B0 to the other parameters in
some non-trivial way.] As discussed in sections 6.4 and 6.5, they should be applied as RG boundary
conditions at the scale MP. The RG evolution of the soft parameters down to the electroweak scale
will then allow us to predict the entire MSSM spectrum in terms of just five parameters m1/2, m

2
0,

A0, B0, and µ (plus the already-measured gauge and Yukawa couplings of the MSSM). A popular
approximation is to start this RG running from the unification scale MU ≈ 1.5 × 1016 GeV instead of
MP. The reason for this is more practical than principled; the apparent unification of gauge couplings
gives us a strong hint that we know something about how the RG equations behave up to MU , but
unfortunately gives us little guidance about what to expect at scales between MU and MP. The errors
made in neglecting these effects are proportional to a loop suppression factor times ln(MP/MU ). These
corrections hopefully can be partly absorbed into a redefinition of m2

0, m1/2, A0 and B0 at MU , but in
many cases will lead to other important effects [158] that are difficult to anticipate.

The framework described in the previous two paragraphs has been the subject of the bulk of phe-
nomenological and experimental studies of supersymmetry, and has become a benchmark scenario for
experimental collider search limits. It is sometimes referred to as the minimal supergravity (MSUGRA)
or Constrained Minimal Supersymmetric Standard Model (CMSSM) scenario for the soft terms.
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m2
Q = m2

u = m2
d

= m2
L = m2

e = m2
0 1, m2

Hu
= m2

Hd
= m2

0, (6.39)

au = A0yu, ad = A0yd, ae = A0ye, (6.40)

b = B0µ, (6.41)

at a renormalization scale Q ≈ MP. It is a matter of some controversy whether the assumptions going
into this parameterization are well-motivated on purely theoretical grounds,† but from a phenomeno-
logical perspective they are clearly very nice. This framework successfully evades the most dangerous
types of flavor changing and CP violation as discussed in section 5.4. In particular, eqs. (6.39) and
(6.40) are just stronger versions of eqs. (5.18) and (5.19), respectively. If m1/2, A0 and B0 all have the
same complex phase, then eq. (5.20) will also be satisfied.

Equations (6.38)-(6.41) also have the virtue of being highly predictive. [Of course, eq. (6.41) is
content-free unless one can relate B0 to the other parameters in some non-trivial way.] As discussed in
sections and 5.4 and 5.5, they should be applied as RG boundary conditions at the scale MP. The RG
evolution of the soft parameters down to the electroweak scale will then allow us to predict the entire
MSSM spectrum in terms of just five parameters m1/2, m2

0, A0, B0, and µ (plus the already-measured
gauge and Yukawa couplings of the MSSM). A popular approximation is to start this RG running from
the unification scale MU ≈ 2 × 1016 GeV instead of MP. The reason for this is more practical than
principled; the apparent unification of gauge couplings gives us a strong hint that we know something
about how the RG equations behave up to MU , but unfortunately gives us little guidance about what
to expect at scales between MU and MP. The errors made in neglecting these effects are proportional
to a loop suppression factor times ln(MP/MU ). These corrections hopefully can be partly absorbed
into a redefinition of m2

0, m1/2, A0 and B0 at MU , but in many cases can lead to other important
effects [135]. The framework described in the above few paragraphs has been the subject of the bulk
of phenomenological studies of supersymmetry. It is sometimes referred to as the minimal supergravity
(MSUGRA) or supergravity-inspired scenario for the soft terms. A few examples of the many useful
numerical RG studies of the MSSM spectrum that have been performed in this framework can be found
in ref. [136].

Particular models of gravity-mediated supersymmetry breaking can be even more predictive, relat-
ing some of the parameters m1/2, m2

0, A0 and B0 to each other and to the mass of the gravitino m3/2.
For example, three popular kinds of models for the soft terms are:

• Dilaton-dominated: [137] m2
0 = m2

3/2, m1/2 = −A0 =
√

3m3/2.

• Polonyi: [138] m2
0 = m2

3/2, A0 = (3 −
√

3)m3/2, m1/2 = O(m3/2).

• “No-scale”: [139] m1/2 ≫ m0, A0,m3/2.

Dilaton domination arises in a particular limit of superstring theory. While it appears to be highly
predictive, it can easily be generalized in other limits [140]. The Polonyi model has the advantage of
being the simplest possible model for supersymmetry breaking in the hidden sector, but it is rather
ad hoc and does not seem to have a special place in grander schemes like superstrings. The “no-
scale” limit may appear in a low-energy limit of superstrings in which the gravitino mass scale is
undetermined at tree-level (hence the name). It implies that the gaugino masses dominate over other
sources of supersymmetry breaking near MP. As we saw in section 5.5, RG evolution feeds m1/2 into
the squark, slepton, and Higgs squared-mass parameters with sufficient magnitude to give acceptable
phenomenology at the electroweak scale. More recent versions of the no-scale scenario, however, also
can give significant A0 and m2

0 at MP. In many cases B0 can also be predicted in terms of the other
parameters, but this is quite sensitive to model assumptions. For phenomenological studies, m1/2,

†The familiar flavor blindness of gravity expressed in Einstein’s equivalence principle does not, by itself, tell us anything
about the form of eq. (6.35), and in particular need not imply eqs. (6.38)-(6.40). (See Appendix.)
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and this is how the formula is sometimes presented, although it is less general since it assumes eq. (6.33).
The decay width is larger for smaller ⟨F ⟩, or equivalently for smaller m3/2, if the other masses are

fixed. If X̃ is a mixture of superpartners of different Standard Model particles X, then each partial
width in eq. (6.32) should be multiplied by a suppression factor equal to the square of the cosine of
the appropriate mixing angle. If m

X̃
is of order 100 GeV or more, and

√
⟨F ⟩ <∼ few ×106 GeV

[corresponding to m3/2 less than roughly 1 keV according to eq. (6.33)], then the decay X̃ → XG̃
can occur quickly enough to be observed in a modern collider detector. This implies some interesting
phenomenological signatures, which we will discuss further in sections 8.5 and 9.

We now turn to a more systematic analysis of the way in which the MSSM soft terms arise.

6.6 Planck-scale-mediated supersymmetry breaking models

Consider the class of models defined by the feature that the spontaneous supersymmetry-breaking
sector connects with our MSSM only (or dominantly) through gravitational-strength interactions [133,
134]. This means that the supergravity effective Lagrangian contains non-renormalizable terms that
communicate between the two sectors and are suppressed by powers of the Planck mass MP. These
will include

LNR = − 1

MP
F
(

1

2
faλ

aλa +
1

6
y′ijkφiφjφk +

1

2
µ′ijφiφj

)
+ c.c.

− 1

M2
P

FF ∗ ki
jφiφ

∗j (6.35)

where F is the auxiliary field for a chiral supermultiplet in the hidden sector, and φi and λa are
the scalar and gaugino fields in the MSSM, and fa, y′ijk, and ki

j are dimensionless constants. By
themselves, the terms in eq. (6.35) are not supersymmetric, but it is possible to show that they are
part of a non-renormalizable supersymmetric Lagrangian (see Appendix) that contains other terms that
we may ignore. Now if one assumes that

√
⟨F ⟩ ∼ 1010 or 1011 GeV, then LNR will give us nothing other

than a Lagrangian of the form Lsoft in eq. (4.1), with MSSM soft terms of order msoft ∼ ⟨F ⟩/MP = a
few hundred GeV.

Note that couplings of the form Lmaybe soft in eq. (4.2) do not arise from eq. (6.35). They actually
are expected to occur, but the largest term from which they could come is:

L = − 1

M3
P

FF ∗xjk
i φ

∗iφjφk + c.c., (6.36)

so in this model framework they are of order ⟨F ⟩2/M3
P ∼ m2

soft/MP, and therefore negligible.
The parameters fa, ki

j , y′ijk and µ′ij in LNR are to be determined by the underlying theory. This is a
difficult enterprise in general, but a dramatic simplification occurs if one assumes a “minimal” form for
the normalization of kinetic terms and gauge interactions in the full, non-renormalizable supergravity
Lagrangian (see Appendix). In that case, there is a common fa = f for the three gauginos; ki

j = kδi
j is

the same for all scalars; and the other couplings are proportional to the corresponding superpotential
parameters, so that y′ijk = αyijk and µ′ij = βµij with universal dimensionless constants α and β. Then
the soft terms in LMSSM

soft are all determined by just four parameters:

m1/2 = f
⟨F ⟩
MP

, m2
0 = k

|⟨F ⟩|2

M2
P

, A0 = α
⟨F ⟩
MP

, B0 = β
⟨F ⟩
MP

. (6.37)

In terms of these, the parameters appearing in eq. (5.12) are:

M3 = M2 = M1 = m1/2, (6.38)
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Higgs potential

• Minimum preserves electromagnetism

• b term, as well as vu and vd are real and positive 
⇒ no extra CP violation

72

This implies that |M2| ≪ |M1| ≪ |M3|, so the lightest neutralino is actually mostly wino, with a
lightest chargino that is only of order 200 MeV heavier, depending on the values of µ and tan β. The
decay C̃±

1 → Ñ1π± produces a very soft pion, implying unique and difficult signatures in colliders
[156]-[160].

Another large general class of models breaks supersymmetry using the geometric or topological
properties of the extra dimensions. In the Scherk-Schwarz mechanism [161], the symmetry is broken
by assuming different boundary conditions for the fermion and boson fields on the compactified space.
In supersymmetric models where the size of the extra dimension is parameterized by a modulus (a
massless or nearly massless excitation) called a radion, the F -term component of the radion chiral
supermultiplet can obtain a VEV, which becomes a source for supersymmetry breaking in the MSSM.
These two ideas turn out to be often related. Some of the variety of models proposed along these lines
can be found in [162]. These mechanisms can also be combined with gaugino-mediation and AMSB. It
seems likely that the possibilities are not yet fully explored.

7 The mass spectrum of the MSSM

7.1 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by the fact
that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H−
d ) rather than just one

in the ordinary Standard Model. The classical scalar potential for the Higgs scalar fields in the MSSM
is given by

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
d |2 + |H−

d |2)
+ [b (H+

u H−
d − H0

uH0
d) + c.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 +

1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2. (7.1)

The terms proportional to |µ|2 come from F -terms [see eq. (5.5)]. The terms proportional to g2 and
g′2 are the D-term contributions, obtained from the general formula eq. (3.75) after some rearranging.
Finally, the terms proportional to m2

Hu
, m2

Hd
and b are just a rewriting of the last three terms of

eq. (5.12). The full scalar potential of the theory also includes many terms involving the squark and
slepton fields that we can ignore here, since they do not get VEVs because they have large positive
squared masses.

We now have to demand that the minimum of this potential should break electroweak symmetry
down to electromagnetism SU(2)L × U(1)Y → U(1)EM, in accord with experiment. We can use the
freedom to make gauge transformations to simplify this analysis. First, the freedom to make SU(2)L
gauge transformations allows us to rotate away a possible VEV for one of the weak isospin components
of one of the scalar fields, so without loss of generality we can take H+

u = 0 at the minimum of the
potential. Then one finds that a minimum of the potential satisfying ∂V/∂H+

u = 0 must also have
H−

d = 0. This is good, because it means that at the minimum of the potential electromagnetism
is necessarily unbroken, since the charged components of the Higgs scalars cannot get VEVs. After
setting H+

u = H−
d = 0, we are left to consider the scalar potential

V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d |2 − (bH0
uH0

d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (7.2)

The only term in this potential that depends on the phases of the fields is the b-term. Therefore, a
redefinition of the phase of Hu or Hd can absorb any phase in b, so we can take b to be real and positive.
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• Potential must be bounded from below ⇒ 

• Electroweak symmetry must be broken 

if this condition not fulfilled then                                
is a stable minimum
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H0
u = H0

d = 0

Then it is clear that a minimum of the potential V requires that H0
uH0

d is also real and positive, so ⟨H0
u⟩

and ⟨H0
d ⟩ must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them

both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, ⟨H0

u⟩, and ⟨Hd⟩ can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (7.2)] are
identically zero. Such directions in field space are called D-flat directions, because along them the part
of the scalar potential coming from D-terms vanishes. In order for the potential to be bounded from
below, we need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to

2b < 2|µ|2 + m2
Hu

+ m2
Hd

. (7.3)

Note that the b-term always favors electroweak symmetry breaking. Requiring that one linear
combination of H0

u and H0
d has a negative squared mass near H0

u = H0
d = 0 gives

b2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

). (7.4)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the potential (or there
will be no stable minimum at all), and electroweak symmetry breaking will not occur.

Interestingly, if m2
Hu

= m2
Hd

then the constraints eqs. (7.3) and (7.4) cannot both be satisfied. In

models derived from the minimal supergravity or gauge-mediated boundary conditions, m2
Hu

= m2
Hd

is

supposed to hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu

[eq. (5.61)] naturally pushes it to negative or small values m2
Hu

< m2
Hd

at the electroweak scale. Unless
this effect is significant, the parameter space in which the electroweak symmetry is broken would
be quite small. So in these models electroweak symmetry breaking is actually driven by quantum
corrections; this mechanism is therefore known as radiative electroweak symmetry breaking. Note that
although a negative value for |µ|2 + m2

Hu
will help eq. (7.4) to be satisfied, it is not strictly necessary.

Furthermore, even if m2
Hu

< 0, there may be no electroweak symmetry breaking if |µ| is too large or if
b is too small. Still, the large negative contributions to m2

Hu
from the RG equation are an important

factor in ensuring that electroweak symmetry breaking can occur in models with simple boundary
conditions for the soft terms. The realization that this works most naturally with a large top-quark
Yukawa coupling provides additional motivation for these models [163, 134].

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we can now
require that they are compatible with the observed phenomenology of electroweak symmetry breaking,
SU(2)L × U(1)Y → U(1)EM. Let us write

vu = ⟨H0
u⟩, vd = ⟨H0

d ⟩. (7.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2
u + v2

d = v2 = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2. (7.6)
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Then it is clear that a minimum of the potential V requires that H0
uH0

d is also real and positive, so ⟨H0
u⟩

and ⟨H0
d ⟩ must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them

both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, ⟨H0

u⟩, and ⟨Hd⟩ can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (7.2)] are
identically zero. Such directions in field space are called D-flat directions, because along them the part
of the scalar potential coming from D-terms vanishes. In order for the potential to be bounded from
below, we need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to
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Note that the b-term always favors electroweak symmetry breaking. Requiring that one linear
combination of H0
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If this inequality is not satisfied, then H0
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d = 0 will be a stable minimum of the potential (or there
will be no stable minimum at all), and electroweak symmetry breaking will not occur.
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Hu
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is

supposed to hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu
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at the electroweak scale. Unless
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be quite small. So in these models electroweak symmetry breaking is actually driven by quantum
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The ratio of the VEVs is traditionally written as

tan β ≡ vu/vd. (7.7)

The value of tanβ is not fixed by present experiments, but it depends on the Lagrangian parameters
of the MSSM in a calculable way. Since vu = v sinβ and vd = v cos β were taken to be real and positive
by convention, we have 0 < β < π/2, a requirement that will be sharpened below. Now one can write
down the conditions ∂V/∂H0

u = ∂V/∂H0
d = 0 under which the potential eq. (7.2) will have a minimum

satisfying eqs. (7.6) and (7.7):

m2
Hu

+ |µ|2 − b cot β − (m2
Z/2) cos(2β) = 0, (7.8)

m2
Hd

+ |µ|2 − b tanβ + (m2
Z/2) cos(2β) = 0. (7.9)

It is easy to check that these equations indeed satisfy the necessary conditions eqs. (7.3) and (7.4).
They allow us to eliminate two of the Lagrangian parameters b and |µ| in favor of tan β, but do not
determine the phase of µ. Taking |µ|2, b, m2

Hu
and m2

Hd
as input parameters, and m2

Z and tan β as
output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+ m2
Hd

+ 2|µ|2
, (7.10)

m2
Z =

|m2
Hd

− m2
Hu

|
√

1 − sin2(2β)
− m2

Hu
− m2

Hd
− 2|µ|2. (7.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (7.10) and (7.11) highlight the “µ problem” already mentioned in section 5.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see section 10.2
and refs. [57]-[59] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (7.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tanβ,
eq. (7.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) +

2

tan2 β
(m2

Hd
− m2

Hu
) + O(1/ tan4 β). (7.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signif-

icant cancellation is needed. In particular, large top squark squared masses, needed to avoid having
the Higgs boson mass turn out too small [see eq. (7.25) below] compared to the direct search limits
from LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the

several per cent level. It is impossible to objectively characterize whether this should be considered
worrisome, but it could be taken as a weak hint in favor of non-minimal models.

The discussion above is based on the tree-level potential, and involves running renormalized La-
grangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V +∆V as a
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Then it is clear that a minimum of the potential V requires that H0
uH0

d is also real and positive, so ⟨H0
u⟩

and ⟨H0
d ⟩ must have opposite phases. We can therefore use a U(1)Y gauge transformation to make them

both be real and positive without loss of generality, since Hu and Hd have opposite weak hypercharges
(±1/2). It follows that CP cannot be spontaneously broken by the Higgs scalar potential, since the
VEVs and b can be simultaneously chosen real, as a convention. This means that the Higgs scalar mass
eigenstates can be assigned well-defined eigenvalues of CP, at least at tree-level. (CP-violating phases
in other couplings can induce loop-suppressed CP violation in the Higgs sector, but do not change the
fact that b, ⟨H0

u⟩, and ⟨Hd⟩ can always be chosen real and positive.)
In order for the MSSM scalar potential to be viable, we must first make sure that the potential is

bounded from below for arbitrarily large values of the scalar fields, so that V will really have a minimum.
(Recall from the discussion in sections 3.2 and 3.4 that scalar potentials in purely supersymmetric
theories are automatically non-negative and so clearly bounded from below. But, now that we have
introduced supersymmetry breaking, we must be careful.) The scalar quartic interactions in V will
stabilize the potential for almost all arbitrarily large values of H0

u and H0
d . However, for the special

directions in field space |H0
u| = |H0

d |, the quartic contributions to V [the second line in eq. (7.2)] are
identically zero. Such directions in field space are called D-flat directions, because along them the part
of the scalar potential coming from D-terms vanishes. In order for the potential to be bounded from
below, we need the quadratic part of the scalar potential to be positive along the D-flat directions.
This requirement amounts to

2b < 2|µ|2 + m2
Hu

+ m2
Hd

. (7.3)

Note that the b-term always favors electroweak symmetry breaking. Requiring that one linear
combination of H0

u and H0
d has a negative squared mass near H0

u = H0
d = 0 gives

b2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

). (7.4)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the potential (or there
will be no stable minimum at all), and electroweak symmetry breaking will not occur.

Interestingly, if m2
Hu

= m2
Hd

then the constraints eqs. (7.3) and (7.4) cannot both be satisfied. In

models derived from the minimal supergravity or gauge-mediated boundary conditions, m2
Hu

= m2
Hd

is

supposed to hold at tree level at the input scale, but the Xt contribution to the RG equation for m2
Hu

[eq. (5.61)] naturally pushes it to negative or small values m2
Hu

< m2
Hd

at the electroweak scale. Unless
this effect is significant, the parameter space in which the electroweak symmetry is broken would
be quite small. So in these models electroweak symmetry breaking is actually driven by quantum
corrections; this mechanism is therefore known as radiative electroweak symmetry breaking. Note that
although a negative value for |µ|2 + m2

Hu
will help eq. (7.4) to be satisfied, it is not strictly necessary.

Furthermore, even if m2
Hu

< 0, there may be no electroweak symmetry breaking if |µ| is too large or if
b is too small. Still, the large negative contributions to m2

Hu
from the RG equation are an important

factor in ensuring that electroweak symmetry breaking can occur in models with simple boundary
conditions for the soft terms. The realization that this works most naturally with a large top-quark
Yukawa coupling provides additional motivation for these models [163, 134].

Having established the conditions necessary for H0
u and H0

d to get non-zero VEVs, we can now
require that they are compatible with the observed phenomenology of electroweak symmetry breaking,
SU(2)L × U(1)Y → U(1)EM. Let us write

vu = ⟨H0
u⟩, vd = ⟨H0

d ⟩. (7.5)

These VEVs are related to the known mass of the Z0 boson and the electroweak gauge couplings:

v2
u + v2

d = v2 = 2m2
Z/(g2 + g′2) ≈ (174 GeV)2. (7.6)
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electroweak scale, none of these bounds need apply.) For a given set of model parameters, it is always
important to take into account the complete set of one-loop corrections and even the dominant two-loop
effects in order to get reasonably accurate predictions for the Higgs masses and mixings [168]-[177].

In the MSSM, the masses and CKM mixing angles of the quarks and leptons are determined not
only by the Yukawa couplings of the superpotential but also the parameter tan β. This is because the
top, charm and up quark mass matrix is proportional to vu = v sinβ and the bottom, strange, and
down quarks and the charge leptons get masses proportional to vd = v cos β. At tree-level,

mt = ytv sinβ, mb = ybv cos β, mτ = yτv cosβ. (7.28)

These relations hold for the running masses rather than the physical pole masses, which are significantly
larger for t, b [179]. Including those corrections, one can relate the Yukawa couplings to tan β and
the known fermion masses and CKM mixing angles. It is now clear why we have not neglected yb

and yτ , even though mb,mτ ≪ mt. To a first approximation, yb/yt = (mb/mt) tan β and yτ/yt =
(mτ/mt) tan β, so that yb and yτ cannot be neglected if tanβ is much larger than 1. In fact, there are
good theoretical motivations for considering models with large tan β. For example, models based on
the GUT gauge group SO(10) can unify the running top, bottom and tau Yukawa couplings at the
unification scale; this requires tanβ to be very roughly of order mt/mb [180, 181].

Note that if one tries to make sinβ too small, yt will be nonperturbatively large. Requiring that
yt does not blow up above the electroweak scale, one finds that tan β >∼ 1.2 or so, depending on the
mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tanβ <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tanβ limit [181]. One can obtain a stronger
upper bound on tanβ in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (5.61) and (5.62), so one
would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tanβ is large.] The parameter
tanβ also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

7.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃0

u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)T M

Ñ
ψ0 + c.c., (7.29)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cotα ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.

∆(m2
h0) =

h0

t

+
h0

t̃

+ h0

t̃

Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [165, 166].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [167]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cosα,− sinα). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tanβ ≈ − cotα ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.
‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against

tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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• The rest of the masses can be arbitrarily large 

function of the VEVs. The impact of this is that the equations governing the VEVs of the full effective
potential are obtained by simply replacing

m2
Hu

→ m2
Hu

+
1

2vu

∂(∆V )

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂(∆V )

∂vd
(7.13)

in eqs. (7.8)-(7.11), treating vu and vd as real variables in the differentiation. The result for ∆V has now
been obtained through two-loop order in the MSSM [164]. The most important corrections come from
the one-loop diagrams involving the top squarks and top quark, and experience shows that the validity
of the tree-level approximation and the convergence of perturbation theory are therefore improved by
choosing a renormalization scale roughly of order the average of the top squark masses.

The Higgs scalar fields in the MSSM consist of two complex SU(2)L-doublet, or eight real, scalar
degrees of freedom. When the electroweak symmetry is broken, three of them are the would-be Nambu-
Goldstone bosons G0, G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of two CP-even neutral scalars h0

and H0, one CP-odd neutral scalar A0, and a charge +1 scalar H+ and its conjugate charge −1 scalar
H−. (Here we define G− = G+∗ and H− = H+∗. Also, by convention, h0 is lighter than H0.) The
gauge-eigenstate fields can be expressed in terms of the mass eigenstate fields as:

(
H0

u

H0
d

)
=

(
vu

vd

)
+

1√
2
Rα

(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
(7.14)

(
H+

u

H−∗
d

)
= Rβ±

(
G+

H+

)
(7.15)

where the orthogonal rotation matrices

Rα =
(

cosα sinα
− sinα cosα

)
, (7.16)

Rβ0
=
(

sinβ0 cos β0

− cos β0 sinβ0

)
, Rβ± =

(
sinβ± cosβ±

− cos β± sinβ±

)
, (7.17)

are chosen so that the quadratic part of the potential has diagonal squared-masses:

V =
1

2
m2

h0(h0)2 +
1

2
m2

H0(H0)2 +
1

2
m2

G0(G0)2 +
1

2
m2

A0(A0)2

+m2
G± |G+|2 + m2

H± |H+|2 + . . . , (7.18)

Then, provided that vu, vd minimize the tree-level potential,† one finds that β0 = β± = β, and m2
G0 =

m2
G± = 0, and

m2
A0 = 2b/ sin(2β) = 2|µ|2 + m2

Hu
+ m2

Hd
(7.19)

m2
h0,H0 =

1

2

(
m2

A0 + m2
Z ∓

√
(m2

A0 − m2
Z)2 + 4m2

Zm2
A0 sin2(2β)

)
, (7.20)

m2
H± = m2

A0 + m2
W . (7.21)

The mixing angle α is determined, at tree-level, by

sin 2α

sin 2β
= −

(
m2

H0 + m2
h0

m2
H0 − m2

h0

)

,
tan 2α

tan 2β
=

(
m2

A0 + m2
Z

m2
A0 − m2

Z

)

, (7.22)

†It is often more useful to expand around VEVs vu, vd that do not minimize the tree-level potential, for example to
minimize the loop-corrected effective potential instead. In that case, β, β0, and β± are all slightly different.
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Neutrinos and charginos

• After electroweak and SUSY symmetry breaking all 
particles acquire masses

• The higgsinos and gauginos mix with each other

• The neutral states mix among themselves, giving 
rise to 4 neutral particles - the neutralinos 

• The same happens with the charged states, after 
eW symmetry breaking there are 2 charginos
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Neutralinos

• In the gauge-eigenstate basis,           
the mass part in the Lagrangian is 
 

• With a mass matrix  
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electroweak scale, none of these bounds need apply.) For a given set of model parameters, it is always
important to take into account the complete set of one-loop corrections and even the dominant two-loop
effects in order to get reasonably accurate predictions for the Higgs masses and mixings [168]-[177].

In the MSSM, the masses and CKM mixing angles of the quarks and leptons are determined not
only by the Yukawa couplings of the superpotential but also the parameter tan β. This is because the
top, charm and up quark mass matrix is proportional to vu = v sinβ and the bottom, strange, and
down quarks and the charge leptons get masses proportional to vd = v cos β. At tree-level,

mt = ytv sinβ, mb = ybv cos β, mτ = yτv cosβ. (7.28)

These relations hold for the running masses rather than the physical pole masses, which are significantly
larger for t, b [179]. Including those corrections, one can relate the Yukawa couplings to tan β and
the known fermion masses and CKM mixing angles. It is now clear why we have not neglected yb

and yτ , even though mb,mτ ≪ mt. To a first approximation, yb/yt = (mb/mt) tan β and yτ/yt =
(mτ/mt) tan β, so that yb and yτ cannot be neglected if tanβ is much larger than 1. In fact, there are
good theoretical motivations for considering models with large tan β. For example, models based on
the GUT gauge group SO(10) can unify the running top, bottom and tau Yukawa couplings at the
unification scale; this requires tanβ to be very roughly of order mt/mb [180, 181].

Note that if one tries to make sinβ too small, yt will be nonperturbatively large. Requiring that
yt does not blow up above the electroweak scale, one finds that tan β >∼ 1.2 or so, depending on the
mass of the top quark, the QCD coupling, and other details. In principle, there is also a constraint on
cos β if one requires that yb and yτ do not become nonperturbatively large. This gives a rough upper
bound of tanβ <∼ 65. However, this is complicated somewhat by the fact that the bottom quark mass
gets significant one-loop non-QCD corrections in the large tanβ limit [181]. One can obtain a stronger
upper bound on tanβ in some models where m2

Hu
= m2

Hd
at the input scale, by requiring that yb does

not significantly exceed yt. [Otherwise, Xb would be larger than Xt in eqs. (5.61) and (5.62), so one
would expect m2

Hd
< m2

Hu
at the electroweak scale, and the minimum of the potential would have

⟨H0
d ⟩ > ⟨H0

u⟩. This would be a contradiction with the supposition that tanβ is large.] The parameter
tanβ also directly impacts the masses and mixings of the MSSM sparticles, as we will see below.

7.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃0

u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)T M

Ñ
ψ0 + c.c., (7.29)

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.
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where

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√

2 g′vu/
√

2
0 M2 gvd/

√
2 −gvu/

√
2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (7.30)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (5.12)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (5.4)]. The terms proportional
to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.72) and Figure 3.3g,h], with the
Higgs scalars replaced by their VEVs [eqs. (7.6), (7.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (7.31)

Here we have introduced abbreviations sβ = sinβ, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (7.32)

so that

N∗M
Ñ
N−1 =

⎛

⎜⎜⎜⎝

m
Ñ1

0 0 0
0 m

Ñ2
0 0

0 0 m
Ñ3

0
0 0 0 m

Ñ4

⎞

⎟⎟⎟⎠ (7.33)

has real positive entries on the diagonal. These are the magnitudes of the eigenvalues of M
Ñ

, or

equivalently the square roots of the eigenvalues of M
†
Ñ
M

Ñ
. The indices (i, j) on Nij are (mass, gauge)

eigenstate labels. The mass eigenvalues and the mixing matrix Nij can be given in closed form in
terms of the parameters M1, M2, µ and tanβ, by solving quartic equations, but the results are very
complicated and not illuminating.

In general, the parameters M1, M2, and µ in the equations above can have arbitrary complex
phases. A redefinition of the phases of B̃ and W̃ always allows us to choose a convention in which M1

and M2 are both real and positive. The phase of µ within that convention is then really a physical
parameter and cannot be rotated away. [We have already used up the freedom to redefine the phases
of the Higgs fields, since we have picked b and ⟨H0

u⟩ and ⟨H0
d ⟩ to be real and positive, to guarantee

that the off-diagonal entries in eq. (7.31) proportional to mZ are real.] However, if µ is not real, then
there can be potentially disastrous CP-violating effects in low-energy physics, including electric dipole
moments for both the electron and the neutron. Therefore, it is usual [although not strictly mandatory,
because of the possibility of nontrivial cancellations involving the phases of the (scalar)3 couplings and
the gluino mass] to assume that µ is real in the same set of phase conventions that make M1, M2, b,
⟨H0

u⟩ and ⟨H0
d ⟩ real and positive. The sign of µ is still undetermined by this constraint.

In models that satisfy eq. (5.49), one has the nice prediction

M1 ≈ 5

3
tan2 θW M2 ≈ 0.5M2 (7.34)

at the electroweak scale. If so, then the neutralino masses and mixing angles depend on only three
unknown parameters. This assumption is sufficiently theoretically compelling that it has been made
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has real positive entries on the diagonal. These are the magnitudes of the eigenvalues of M
Ñ

, or

equivalently the square roots of the eigenvalues of M
†
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M

Ñ
. The indices (i, j) on Nij are (mass, gauge)

eigenstate labels. The mass eigenvalues and the mixing matrix Nij can be given in closed form in
terms of the parameters M1, M2, µ and tanβ, by solving quartic equations, but the results are very
complicated and not illuminating.

In general, the parameters M1, M2, and µ in the equations above can have arbitrary complex
phases. A redefinition of the phases of B̃ and W̃ always allows us to choose a convention in which M1

and M2 are both real and positive. The phase of µ within that convention is then really a physical
parameter and cannot be rotated away. [We have already used up the freedom to redefine the phases
of the Higgs fields, since we have picked b and ⟨H0
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d ⟩ to be real and positive, to guarantee

that the off-diagonal entries in eq. (7.31) proportional to mZ are real.] However, if µ is not real, then
there can be potentially disastrous CP-violating effects in low-energy physics, including electric dipole
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because of the possibility of nontrivial cancellations involving the phases of the (scalar)3 couplings and
the gluino mass] to assume that µ is real in the same set of phase conventions that make M1, M2, b,
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d ⟩ real and positive. The sign of µ is still undetermined by this constraint.

In models that satisfy eq. (5.49), one has the nice prediction

M1 ≈ 5

3
tan2 θW M2 ≈ 0.5M2 (7.34)

at the electroweak scale. If so, then the neutralino masses and mixing angles depend on only three
unknown parameters. This assumption is sufficiently theoretically compelling that it has been made
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in most phenomenological studies; nevertheless it should be recognized as an assumption, to be tested
someday by experiment.

There is a not-unlikely limit in which electroweak symmetry breaking effects can be viewed as a
small perturbation on the neutralino mass matrix. If

mZ ≪ |µ ± M1|, |µ ± M2|, (7.35)

then the neutralino mass eigenstates are very nearly a “bino-like” Ñ1 ≈ B̃; a “wino-like” Ñ2 ≈ W̃ 0;
and “higgsino-like” Ñ3, Ñ4 ≈ (H̃0

u ± H̃0
d)/

√
2, with mass eigenvalues:

m
Ñ1

= M1 −
m2

Zs2
W (M1 + µ sin 2β)

µ2 − M2
1

+ . . . (7.36)

m
Ñ2

= M2 −
m2

W (M2 + µ sin 2β)

µ2 − M2
2

+ . . . (7.37)

m
Ñ3

,m
Ñ4

= |µ| + m2
Z(I − sin 2β)(µ + M1c2

W + M2s2
W )

2(µ + M1)(µ + M2)
+ . . . , (7.38)

|µ| + m2
Z(I + sin 2β)(µ − M1c2

W − M2s2
W )

2(µ − M1)(µ − M2)
+ . . . (7.39)

where we have taken M1 and M2 real and positive by convention, and assumed µ is real with sign
I = ±1. The subscript labels of the mass eigenstates may need to be rearranged depending on the
numerical values of the parameters; in particular the above labeling of Ñ1 and Ñ2 assumes M1 <
M2 ≪ |µ|. This limit, leading to a bino-like neutralino LSP, often emerges from minimal supergravity
boundary conditions on the soft parameters, which tend to require it in order to get correct electroweak
symmetry breaking.

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis ψ± =
(W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the Lagrangian are

Lchargino mass = −1

2
(ψ±)TM

C̃
ψ± + c.c. (7.40)

where, in 2 × 2 block form,

M
C̃

=
(

0 XT

X 0

)
, (7.41)

with

X =
(

M2 gvu

gvd µ

)
=
(

M2

√
2sβ mW√

2cβ mW µ

)
. (7.42)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U and V

according to

(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
. (7.43)

Note that the mixing matrix for the positively charged left-handed fermions is different from that for
the negatively charged left-handed fermions. They are chosen so that

U∗XV−1 =
(

m
C̃1

0
0 m

C̃2

)
, (7.44)
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with positive real entries m
C̃i

. Because these are only 2×2 matrices, it is not hard to solve for the
masses explicitly:

m2
C̃1

,m2
C̃2

=
1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 − m2

W sin 2β|2
]
. (7.45)

These are the (doubly degenerate) eigenvalues of the 4 × 4 matrix M
†
C̃
M

C̃
, or equivalently the eigen-

values of X†X, since

VX†XV−1 = U∗XX†UT =

(
m2

C̃1

0

0 m2
C̃2

)

. (7.46)

(But, they are not the squares of the eigenvalues of X.) In the limit of eq. (7.35) with real M2 and µ,
the chargino mass eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 − M2
2

+ . . . (7.47)

m
C̃2

= |µ| + m2
W I(µ + M2 sin 2β)

µ2 − M2
2

+ . . . . (7.48)

Here again the labeling assumes M2 < |µ|, and I is the sign of µ. Amusingly, C̃1 is nearly degenerate
with the neutralino Ñ2 in the approximation shown, but that is not an exact result. Their higgsino-like
colleagues Ñ3, Ñ4 and C̃2 have masses of order |µ|. The case of M1 ≈ 0.5M2 ≪ |µ| is not uncommonly
found in viable models following from the boundary conditions in section 6, and it has been elevated
to the status of a benchmark framework in many phenomenological studies. However it cannot be
overemphasized that such expectations are not mandatory.

The Feynman rules involving neutralinos and charginos may be inferred in terms of N, U and V

from the MSSM Lagrangian as discussed above; they are collected in refs. [25], [165]. In practice, the
masses and mixing angles for the neutralinos and charginos are best computed numerically. Note that
the discussion above yields the tree-level masses. Loop corrections to these masses can be significant,
and have been found systematically at one-loop order in ref. [182].

7.3 The gluino

The gluino is a color octet fermion, so it cannot mix with any other particle in the MSSM, even if
R-parity is violated. In this regard, it is unique among all of the MSSM sparticles. In models with
minimal supergravity or gauge-mediated boundary conditions, the gluino mass parameter M3 is related
to the bino and wino mass parameters M1 and M2 by eq. (5.49), so

M3 =
αs

α
sin2 θW M2 =

3

5

αs

α
cos2 θW M1 (7.49)

at any RG scale, up to small two-loop corrections. This implies a rough prediction

M3 : M2 : M1 ≈ 6 : 2 : 1 (7.50)

near the TeV scale. It is therefore reasonable to suspect that the gluino is considerably heavier than the
lighter neutralinos and charginos (even in many models where the gaugino mass unification condition
is not imposed).

For more precise estimates, one must take into account the fact that M3 is really a running mass
parameter with an implicit dependence on the RG scale Q. Because the gluino is a strongly interacting
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where

m2

t̃
=
(

m2
Q3

+ m2
t + ∆ũL v(a∗t sinβ − µyt cos β)

v(at sinβ − µ∗yt cos β) m2
u3

+ m2
t + ∆ũR

)
. (7.70)

This hermitian matrix can be diagonalized by a unitary matrix to give mass eigenstates:

(
t̃1
t̃2

)
=
(

ct̃ −s∗
t̃

st̃ ct̃

)(
t̃L
t̃R

)
. (7.71)

Here m2
t̃1

< m2
t̃2

are the eigenvalues of eq. (7.70), and |ct̃|2 + |st̃|2 = 1. If the off-diagonal elements

of eq. (7.70) are real, then ct̃ and st̃ are the cosine and sine of a stop mixing angle θt̃, which can be
chosen in the range 0 ≤ θt̃ < π. Because of the large RG effects proportional to Xt in eq. (5.63) and
eq. (5.64), at the electroweak scale one finds that m2

u3
< m2

Q3
, and both of these quantities are usually

significantly smaller than the squark squared masses for the first two families. The diagonal terms m2
t

in eq. (7.70) tend to mitigate this effect somewhat, but the off-diagonal entries will typically induce
a significant mixing, which always reduces the lighter top-squark squared-mass eigenvalue. Therefore,
models often predict that t̃1 is the lightest squark of all, and that it is predominantly t̃R.

A very similar analysis can be performed for the bottom squarks and charged tau sleptons, which
in their respective gauge-eigenstate bases (̃bL, b̃R) and (τ̃L, τ̃R) have squared-mass matrices:

m2

b̃
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(
m2

Q3
+ ∆d̃L

v(a∗b cosβ − µyb sinβ)

v(ab cosβ − µ∗yb sinβ) m2
d3

+ ∆d̃R
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m2
τ̃

=
(

m2
L3

+ ∆ẽL v(a∗τ cosβ − µyτ sinβ)
v(aτ cos β − µ∗yτ sinβ) m2

e3
+ ∆ẽR

)
. (7.73)

These can be diagonalized to give mass eigenstates b̃1, b̃2 and τ̃1, τ̃2 in exact analogy with eq. (7.71).
The magnitude and importance of mixing in the sbottom and stau sectors depends on how big

tanβ is. If tanβ is not too large (in practice, this usually means less than about 10 or so, depending
on the situation under study), the sbottoms and staus do not get a very large effect from the mixing
terms and the RG effects due to Xb and Xτ , because yb, yτ ≪ yt from eq. (7.28). In that case the
mass eigenstates are very nearly the same as the gauge eigenstates b̃L, b̃R, τ̃L and τ̃R. The latter
three, and ν̃τ , will be nearly degenerate with their first- and second-family counterparts with the same
SU(3)C ×SU(2)L ×U(1)Y quantum numbers. However, even in the case of small tanβ, b̃L will feel the
effects of the large top Yukawa coupling because it is part of the doublet containing t̃L. In particular,
from eq. (5.63) we see that Xt acts to decrease m2

Q3
as it is RG-evolved down from the input scale to

the electroweak scale. Therefore the mass of b̃L can be significantly less than the masses of d̃L and s̃L.
For larger values of tanβ, the mixing in eqs. (7.72) and (7.73) can be quite significant, because yb,

yτ and ab, aτ are non-negligible. Just as in the case of the top squarks, the lighter sbottom and stau
mass eigenstates (denoted b̃1 and τ̃1) can be significantly lighter than their first- and second-family
counterparts. Furthermore, ν̃τ can be significantly lighter than the nearly degenerate ν̃e, ν̃µ.

The requirement that the third-family squarks and sleptons should all have positive squared masses
implies limits on the magnitudes of a∗t sinβ−µyt cos β and a∗b cosβ−µyb sinβ and and a∗τ cos β−µyτ sinβ.
If they are too large, then the smaller eigenvalue of eq. (7.70), (7.72) or (7.73) will be driven negative,
implying that a squark or charged slepton gets a VEV, breaking SU(3)C or electromagnetism. Since
this is clearly unacceptable, one can put bounds on the (scalar)3 couplings, or equivalently on the
parameter A0 in minimal supergravity models. Even if all of the squared-mass eigenvalues are positive,
the presence of large (scalar)3 couplings can yield global minima of the scalar potential, with non-zero
squark and/or charged slepton VEVs, which are disconnected from the vacuum that conserves SU(3)C
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)
. (7.70)

This hermitian matrix can be diagonalized by a unitary matrix to give mass eigenstates:

(
t̃1
t̃2

)
=
(

ct̃ −s∗
t̃

st̃ ct̃

)(
t̃L
t̃R

)
. (7.71)

Here m2
t̃1

< m2
t̃2

are the eigenvalues of eq. (7.70), and |ct̃|2 + |st̃|2 = 1. If the off-diagonal elements

of eq. (7.70) are real, then ct̃ and st̃ are the cosine and sine of a stop mixing angle θt̃, which can be
chosen in the range 0 ≤ θt̃ < π. Because of the large RG effects proportional to Xt in eq. (5.63) and
eq. (5.64), at the electroweak scale one finds that m2

u3
< m2

Q3
, and both of these quantities are usually

significantly smaller than the squark squared masses for the first two families. The diagonal terms m2
t

in eq. (7.70) tend to mitigate this effect somewhat, but the off-diagonal entries will typically induce
a significant mixing, which always reduces the lighter top-squark squared-mass eigenvalue. Therefore,
models often predict that t̃1 is the lightest squark of all, and that it is predominantly t̃R.

A very similar analysis can be performed for the bottom squarks and charged tau sleptons, which
in their respective gauge-eigenstate bases (̃bL, b̃R) and (τ̃L, τ̃R) have squared-mass matrices:

m2

b̃
=

(
m2

Q3
+ ∆d̃L

v(a∗b cosβ − µyb sinβ)

v(ab cosβ − µ∗yb sinβ) m2
d3

+ ∆d̃R

)

, (7.72)

m2
τ̃

=
(

m2
L3
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Regardless of the type of model, there is also a “hyperfine” splitting in the squark and slepton
mass spectrum produced by electroweak symmetry breaking. Each squark and slepton φ will get a
contribution ∆φ to its squared mass, coming from the SU(2)L and U(1)Y D-term quartic interactions
[see the last term in eq. (3.75)] of the form (squark)2(Higgs)2 and (slepton)2(Higgs)2, when the neutral
Higgs scalars H0

u and H0
d get VEVs. They are model-independent for a given value of tanβ:

∆φ = (T3φg
2 − Yφg

′2)(v2
d − v2

u) = (T3φ − Qφ sin2 θW ) cos(2β)m2
Z , (7.60)

where T3φ, Yφ, and Qφ are the third component of weak isospin, the weak hypercharge, and the
electric charge of the left-handed chiral supermultiplet to which φ belongs. For example, ∆ũL =
(1
2 −

2
3 sin2 θW ) cos(2β)m2

Z and ∆d̃L
= (−1

2 + 1
3 sin2 θW ) cos(2β)m2

Z and ∆ũR = (2
3 sin2 θW ) cos(2β)m2

Z .

These D-term contributions are typically smaller than the m2
0 and K1, K2, K3 contributions, but

should not be neglected. They split apart the components of the SU(2)L-doublet sleptons and squarks.
Including them, the first-family squark and slepton masses are now given by:

m2
d̃L

= m2
0 + K3 + K2 +

1

36
K1 + ∆d̃L

, (7.61)

m2
ũL

= m2
0 + K3 + K2 +

1

36
K1 + ∆ũL , (7.62)

m2
ũR

= m2
0 + K3 +

4

9
K1 + ∆ũR , (7.63)

m2
d̃R

= m2
0 + K3 +

1

9
K1 + ∆d̃R

, (7.64)

m2
ẽL

= m2
0 + K2 +

1

4
K1 + ∆ẽL , (7.65)

m2
ν̃ = m2

0 + K2 +
1

4
K1 + ∆ν̃ , (7.66)

m2
ẽR

= m2
0 + K1 + ∆ẽR , (7.67)

with identical formulas for the second-family squarks and sleptons. The mass splittings for the left-
handed squarks and sleptons are governed by model-independent sum rules

m2
ẽL

− m2
ν̃e

= m2
d̃L

− m2
ũL

= g2(v2
u − v2

d)/2 = − cos(2β)m2
W . (7.68)

In the allowed range tan β > 1, it follows that mẽL > mν̃e and md̃L
> mũL , with the magnitude of the

splittings constrained by electroweak symmetry breaking.
Let us next consider the masses of the top squarks, for which there are several non-negligible

contributions. First, there are squared-mass terms for t̃∗Lt̃L and t̃∗Rt̃R that are just equal to m2
Q3

+∆ũL

and m2
u3

+ ∆ũR , respectively, just as for the first- and second-family squarks. Second, there are

contributions equal to m2
t for each of t̃∗Lt̃L and t̃∗Rt̃R. These come from F -terms in the scalar potential

of the form y2
t H

0∗
u H0

u t̃∗Lt̃L and y2
t H

0∗
u H0

u t̃∗Rt̃R (see Figures 5.2b and 5.2c), with the Higgs fields replaced
by their VEVs. (Of course, similar contributions are present for all of the squarks and sleptons, but
they are too small to worry about except in the case of the top squarks.) Third, there are contributions

to the scalar potential from F -terms of the form −µ∗ytt̃t̃H0∗
d +c.c.; see eqs. (5.6) and Figure 5.4a. These

become −µ∗vyt cos β t̃∗Rt̃L +c.c. when H0
d is replaced by its VEV. Finally, there are contributions to the

scalar potential from the soft (scalar)3 couplings att̃Q̃3H0
u + c.c. [see the first term of the second line of

eq. (5.12), and eq. (5.50)], which become atv sinβ t̃Lt̃∗R + c.c. when H0
u is replaced by its VEV. Putting

these all together, we have a squared-mass matrix for the top squarks, which in the gauge-eigenstate
basis (t̃L, t̃R) is given by

Lstop masses = − ( t̃∗L t̃∗R )m2

t̃

(
t̃L
t̃R

)
(7.69)
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0 + K1 + ∆ẽR , (7.67)

with identical formulas for the second-family squarks and sleptons. The mass splittings for the left-
handed squarks and sleptons are governed by model-independent sum rules

m2
ẽL
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MSSM mass states
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Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−

d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃0

d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−

d C̃±
1 C̃±

2

gluino 1/2 −1 g̃ (same)

goldstino
(gravitino)

1/2
(3/2) −1 G̃ (same)

Table 7.1: The undiscovered particles in the Minimal Supersymmetric Standard Model (with sfermion
mixing for the first two families assumed to be negligible).

and electromagnetism [184]. However, it is not always immediately clear whether the mere existence
of such disconnected global minima should really disqualify a set of model parameters, because the
tunneling rate from our “good” vacuum to the “bad” vacua can easily be longer than the age of the
universe [185].

7.5 Summary: the MSSM sparticle spectrum

In the MSSM there are 32 distinct masses corresponding to undiscovered particles, not including the
gravitino. In this section we have explained how the masses and mixing angles for these particles can
be computed, given an underlying model for the soft terms at some input scale. Assuming only that
the mixing of first- and second-family squarks and sleptons is negligible, the mass eigenstates of the
MSSM are listed in Table 7.1. A complete set of Feynman rules for the interactions of these particles
with each other and with the Standard Model quarks, leptons, and gauge bosons can be found in
refs. [25, 165]. Specific models for the soft terms typically predict the masses and the mixing angles
angles for the MSSM in terms of far fewer parameters. For example, in the minimal supergravity
models, the only parameters not already measured by experiment are m2

0, m1/2, A0, µ, and b. In
gauge-mediated supersymmetry breaking models, the free parameters include at least the scale Λ,
the typical messenger mass scale Mmess, the integer number N5 of copies of the minimal messengers,
the goldstino decay constant ⟨F ⟩, and the Higgs mass parameters µ and b. After RG evolving the soft
terms down to the electroweak scale, one can demand that the scalar potential gives correct electroweak
symmetry breaking. This allows us to trade |µ| and b (or B0) for one parameter tanβ, as in eqs. (7.9)-
(7.8). So, to a reasonable approximation, the entire mass spectrum in minimal supergravity models is
determined by only five unknown parameters: m2

0, m1/2, A0, tanβ, and Arg(µ), while in the simplest
gauge-mediated supersymmetry breaking models one can pick parameters Λ, Mmess, N5, ⟨F ⟩, tan β,
and Arg(µ). Both frameworks are highly predictive. Of course, it is easy to imagine that the essential
physics of supersymmetry breaking is not captured by either of these two scenarios in their minimal
forms. For example, the anomaly mediated contributions could play a role, perhaps in concert with
the gauge-mediation or Planck-scale mediation mechanisms.
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Evolution of scalars and neutralinos
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [186]-[195],[177].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
superpartner. The squarks are all much heavier than the sleptons, and the lightest sfermion is a stau.
Variations in the model parameters have important and predictable effects. For example, taking larger
m2

0 in minimal supergravity models will tend to squeeze together the spectrum of squarks and sleptons
and move them all higher compared to the neutralinos, charginos and gluino. Taking larger values of
tanβ with other model parameters held fixed will usually tend to lower b̃1 and τ̃1 masses compared to
those of the other sparticles.

The second sample sketch in fig. 7.5 is obtained from a typical minimal GMSB model, with boundary
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CMSSM

• MSSM has too many free 
parameters, even after 
constraining FCNCs

• Constrained MSSM, 
inspired by SUSY GUTs 
and minimal supergravity 
models mSUGRA

• Assumes universal 
masses for gauginos, soft 
scalars at the unification 
scale

• Has five parameters:  
vu/vd = tan 𝛃 
sign 𝞵 
unified gaugino mass m1/2 
unified scalar mass m0 
unified trilinear  
scalar terms A 

• Parts of this model have 
already been excluded by 
LHC... others haven’t 
been probed yet 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Figure 2: Limits, at 95% C.L., derived from
several different ATLAS searches in the CMSSM
parameters m0 and m1/2, assuming tanβ = 30,
A0 = −2m0 and µ > 0 [62].

below approximately 1300 GeV (see also [66–68]) , for a massless

neutralino. In scenarios where neutralinos are not very light,

the efficiency of the analyses is reduced by the fact that jets are

less energetic, and there is less missing transverse momentum

in the event. This leads to weaker limits when the mass differ-

ence ∆m = mg̃ − mχ̃0
1

is reduced. For example, for neutralino

masses above about 550 GeV no limit on the gluino mass can

be set for this decay chain. Therefore, limits on gluino masses

are strongly affected by the assumption of the neutralino mass.

Similar results for this simplified model have been obtained by

ATLAS [62].

October 1, 2016 19:58

Gluino mass limits from ATLAS (PDG)  
masses < 1300 GeV excluded 

More sensitivity in LHC to coloured particles — squarks, gluinos
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so why SUSY?

• Solution to the hierarchy problem

• Several dark matter candidates:  
lightest neutralino, gravitino, axino...

• Compatible with unification of couplings

• Unification of couplings compatible with scales of seesaw 
mechanism

• R parity can be broken → gravitino as dark matter, neutrino masses 
in some GUTs

• More models than the CMSSM with different predictions

• Un-natural → might just hide unknown physics → correlations 
among parameters

• Non-appearance? → reexamine where the expectations came 
from
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SUSY GUTs

• Add yet more symmetry: 
combine SUSY and GUTs

• Unification of couplings is 
good in SUSY GUTs

• Proton lifetime longer

• SU(5) add neutrinos with a 
U(1), non-renormalizable 
interactions or R parity 
violation

• SO(10) has naturally right 
handed neutrinos, more 
stages of symmetry 
breaking

• Some GUT problems 
alleviated by SUSY relations
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More ways for the proton to decay…
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Problems introduced by SUSY ... 
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Dimension 5 operators 
i.e. QQQL
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Dimension 4 operators 
UCDCDC or QLDC  

forbidden by R parity
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Many Other GUTs Beyond This Simple Story 

A. Bueno et al. hep-ph/0701101 

Uncertainties in the 
predictions: 

Nuclear matrix elements 
updated w. lQCD, still: 
x10 uncertainty in lifetime 

SUSY masses: ~ x100 
uncertainty in lifetime 

Current limit ~ 1034 years 
 from super-Kamiokande 


