Measurement of matter-antimatter differences in beauty baryon decays

Group E Collaboration.

CLASHEP 2017

19 March 2017

Introduction

Using 3 fb⁻¹ of proton-proton collision data collected at a centre of mass energy of 7 and 8 TeV by the LHCb experiment at the Large Hadron Collider, a search is made for CP-violating asymmetries in the decays of Λ_b^0 baryons [1].

We find evidence for CP violation with a statistical significance corresponding to 3.3 standard deviations. This represents the first evidence for CP violation in the baryon sector.

Motivation and Theory

▶ Differences in the behaviour of matter and antimatter have been observed in *K* and *B* meson, but not yet in any baryon decay.

- ► The only source of CP violation in the SM is in the CKM matrix (insufficient).
- ► Has **never** been observed in Baryons before. Estimated small asymmetries make it an ideal place to look for NP.

$$\left(\Lambda_{\rm b}^0 \to p \, \pi^- \, \pi^+ \, \pi^- \right)$$

Motivation and Theory

► For observing CP, we need at least two processes of similar amplitudes containing two different weak phases:

$$T_1 e^{i\eta_1} e^{i\delta_1} + T_2 e^{i\eta_2} e^{i\delta_2}.$$

Usual rate asymmetries are very sensitive to relative strong phases, so we build new observables:

$$\mathcal{A} \propto \sin{(\Delta \eta)} \sin{(\Delta \delta)} \rightarrow \mathcal{A}' \propto \cos{(\Delta \eta)} \sin{(\Delta \delta)}.$$

Motivation and Theory

$$\begin{split} C_{\hat{T}} &= \quad \vec{p}_{p}.(\vec{p}_{h_{1}^{-}} \times \vec{p}_{h_{2}^{+}}) \\ \overline{C}_{\hat{T}} &= \quad \vec{p}_{\overline{p}}.(\vec{p}_{h_{1}^{+}} \times \vec{p}_{h_{2}^{-}}) \end{split}$$

$$\begin{cases} A_{\hat{T}}(C_{\hat{T}}) = & \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)} \\ \\ \overline{A}_{\hat{T}}(\overline{C}_{\hat{T}}) = & \frac{\overline{N}(-\overline{C}_{\hat{T}} > 0) - \overline{N}(-\overline{C}_{\hat{T}} < 0)}{\overline{N}(-\overline{C}_{\hat{T}} > 0) + \overline{N}(-\overline{C}_{\hat{T}} < 0)} \end{cases}$$

$$a_P^{\hat{T}-\mathrm{odd}} = \frac{1}{2} \left(A_{\hat{T}} + \overline{A}_{\hat{T}} \right), \qquad a_{CP}^{\hat{T}-\mathrm{odd}} = \frac{1}{2} \left(A_{\hat{T}} - \overline{A}_{\hat{T}} \right)$$

Experimental Setup

Figure 1: LHCb layaout. Vertex Locator: **VELO**. Cherenkov radiation detectors: **RICH 1** and **2**. Tracker detectors: **TT**, **T1**, **T2** and **T3**. Dipole Magnet. Scintillator Pad Detector and Preshower: **SPD/PS**. Electromagnetic and Hadronic calorimeters: **ECAL & HCAL**. Muon detectors: **M1**, **M2**, **M3**, **M4** and **M5**.

VELO & RICH detectors

Event Selection

- Boosted Decision Tree (BDT).
- ► Few Variables (>4).
- ► Real Data to Train.

- MC is used to cross check.
- $ightharpoonup {}_{s}\mathcal{P}lot$ technique is used to subtract the background.

Decays	S	В	$S/\sqrt{S+B}$	ϵ_S	ϵ_B
$\Lambda_h^0 \to p \pi^- \pi^+ \pi^-$	2713	4431	45.56	0.9015	0.0983

Table 1: Signal (S) and background (B) yields before BDT selection are estimated from fit with PID cuts. Significance and efficiencies for S and B are also in the table

Statistical Analysis

Perform simultaneous likelihood fit to invariant mass distribution to extract number of signal events and calculate $a_P^{\hat{T}-{\rm odd}}$ and $a_{CP}^{\hat{T}-{\rm odd}}$. Four distributions: Λ_b^0 (with $C_{\hat{T}}>0$ and $C_{\hat{T}}<0$) and $\overline{\Lambda}_b^0$ (with $\overline{C}_{\hat{T}}>0$ and $\overline{C}_{\hat{T}}<0$).

Modelling

- ► Signal: Gaussian + power law tails
- Combinatorial background: Exponential
- ▶ $\Lambda_b^0 \to pK^-\pi^-\pi^+$: BG Simulation
- $\Lambda_b^0 \to K^+\pi^-\pi^-\pi^+$: BG Simulation
- Partially reconstructed Λ_b^0 : Empirical function convoluted with a Gaussian

Statistical Analysis

Measurements of asymmetries integrated over the entire phase space do not show any evidence of P or CP violation.

We develop two different binning schemes to maximize our sensitivity to the asymmetries:

Scheme A: Defined to isolate the contributions from different resonances to the asymmetries.

Scheme B: Bins in the angle Φ to exploit interferences which could be visible as a function of the angle.

Statistical Analysis

Results of the asymmetry measurements per bin for each scheme.

Systematic Uncertainties

Three different sources of systematic uncertainties.

Decays	Contribution	$a_{CP}^{\hat{T}-odd}(\%)$
$\Lambda_b^0 \to p\pi^-\pi^+\pi^-$	Experimental bias	± 0.60
-	C_T resolution	± 0.05
	Fit model	± 0.03
	Total	± 0.60

Statistical Analysis and Results

Compatibility with the CP-symmetry hypothesis is evaluated by means of a χ^2 test:

$$\chi^2 = R^T V^{-1} R$$
 ,

where R is an array with the $a_{CP}^{\hat{T}-\text{odd}}$ measurements, and V is the covariance matrix (taken to be the sum of the statistical and systematic covariance matrices, where the systematic uncertainties are considered to be fully correlated between bins).

Significance per scheme:

	Scheme A	Scheme B
P symmetry	2.8σ	2.3σ
CP symmetry	2.0σ	3.4 σ

Statistical Analysis and Results

- Combine the results for schemes A and B to obtain the overall significance by means of a permutation test (since the schemes are not statistically independent).
- ▶ 40,000 pseudoexperiments are generated from the data by assigning each event a random flavour $(\Lambda_b^0, \overline{\Lambda}_b^0)$. The sign of C_T is unchanged if a Λ_b^0 candidate stays Λ_b^0 , and reversed if it becomes $\overline{\Lambda}_b^0$. This enforces CP-symmetry.
- ► The product of the two p-values measured in data is compared with the distribution of the product of the p-values of the two binning schemes from the pseudoexperiments.
- An overall p-value of 9.8×10^{-4} (3.3 σ) is obtained for the CP-symmetry hypothesis.

Summary

- ► Searches for localized *P* or *CP* violation are performed by measuring asymmetries in different regions of the phase space.
- ▶ The results show evidence for CPV at the 3.3σ level in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ decays, and no significant P violation is found.
- ► This represents the first evidence of CP violation in the baryon sector and indicates an asymmetry between baryonic matter and antimatter.

Summary

 3.3σ significance.

References

- LHCb collaboration: R. Aaij et al., Measurement of matter-antimatter differences in beauty baryon decays. (2016)
- Bensalem, W., Datta, A. and London, D. New physics effects on triple product correlations in Λ_{0b} decays. Phys. Rev. D 66, 094004. (2002)

BackUp

Cross-checks were made to check the stability of the results:

- ▶ Reconstruction eliciency vs C_T values.
- Different periods of data taking.
- Different magnet polarities.
- Selection of multiple candidates.
- Trigger and selection criteria.

BackUp - Event Selection

The concept of $_{\rm s}{\cal P}{\it lot}$ is to reweight the data using information from the fit model and fit result. The sWeights is computed, from which one can reweight the data to make $_{\rm s}{\cal P}{\it lot}$.

sWeights: $_{s}\mathcal{P}$

$$s\mathcal{P}_n(y_e) = \frac{\sum\limits_{j=1}^{N_s} \mathbf{V}_{nj} f_j(y_e)}{\sum\limits_{K=1}^{N_s} N_k f_k(y_e)} \quad (1)$$

where:

- 1. y_e is the set of discriminating variables used in the fit.
- 2. $f_{j/k}(y_e)$ is the PDF for the $j^{\text{th}}/k^{\text{th}}$ component in the fit model.
- 3. V_{nj} is the covariance matrix obtained from fitting the data.
- 4. N_k is the event yield fitted for the k^{th} component.

BackUp - Trigger

BackUp - Trigger

From LHCb report:

Trigger Level	Trigger line
L0	Hadron TOS on Λ_b^0 Global TIS on Λ_b^0
HLT1	TrackALLL0 TOS on Λ_b^0
HLT2	Topo(2,3,4)Simple TOS on Λ_b^0 Topo(2,3,4)BBDT TOS on Λ_b^0

BackUp - Systematic Uncertainties

Three main sources of systematic uncertainty identified:

- Experimental bias
 - Use control sample $\Lambda^0 \to \Lambda_c^+(\to pK^-\pi^+)\pi^-$ with negligible CPV. Deviation of $a_{CP}^{\hat{T}-\text{odd}}$ from zero is the systematic.
 - Both integrated and binned measurements.
- Detector resolution
 - ▶ Resolution on measurement of $C_{\hat{T}}$ and $\overline{C}_{\hat{T}}$ can cause migration between bins.
 - Estimated from MC by measuring difference between the reconstructed and generated asymmetry.
- Fit model
 - Use alternate model for signal and background and perform fit.
 - Deviation of mean of pull distributions from zero is the systematic.