

16 T COSO DIPOLE MECHANICAL ANALYSIS

<u>STEFANIA FARINON</u> ON BEHALF OF INFN TEAM: G. BELLOMO, P. FABBRICATORE, B.CAIFFI, V. MARINOZZI, M. SORBI AND G. VOLPINI

OVERVIEW

- Principal stresses and failure criteria
- 2D model: plain strain vs plain stress
- 2D mechanical optimization
- $\cos\theta$ 2D models:
- CONFIGURATION I vertical cut
- CONFIGURATION II horizontal cut
- CONFIGURATION III hybrid
- CONCLUSIONS

PRINCIPAL STRESSES

STRESSES

PLANE STRESS VS PLANE STRAIN

Plane strain y $\varepsilon_{xz} = 0$ $\varepsilon_{yz} = 0$

Plane strain is a stress state that varies only in the X and Y directions. The strain in the Z direction is always zero, as are the XZ and YZ shear strains, since the boundaries are fixed.

Plane stress is a stress state that varies only in the X and Y directions. The stress in the Z direction is always zero, as are the XZ and YZ shear stresses. Plane stress is generally used on flat, thin structures, where the deformation is assumed to be solely in the plane of the structure.

Plain stress approximation is less conservative but more compatible with 3D simulation results.

2D MECHANICAL OPTIMIZATION

Cables undergo degradation if:

- stress on conductors >150 MPa @room temperature;
- stress on conductors > 200 MPa @cold;
- stress on conductors > 150 MPa @cold after energization in the high field region → attention must be given in particular to first layers.
- Tensile stress on the iron yoke at 4 K < 200 Mpa.
- Contact pressure Ti pole-conductors > 2 MPa after energization at 16T.

Critical Current Measurements of High-*J*_c Nb₃Sn Rutherford Cables under Transverse Compression

MATERIAL PARAMETERS

	E modulus [GPa] (T=4K)	E modulus [GPa] (T=300K)	α(Κ-1)	v _{xy}
Conductor	E _x =33 E _y =27.5	E _x =30 E _y =25	α _x =3.08E-3/296 α _y =3.36E-3/296	0.3
Steel	210	191	2.8e-3/296	0.28
Iron	224	204	2.0e-3/296	0.28
Aluminum	79 +10%	72	4.2e-3/296	0.3
Copper	110	100	3.4e-3/296	0.3
Resin	27.5	25	2.5e-3/296	0.2
Titanium	126.5	115	I.7e-3/296	0.3

- <u>Bladder & key configuration</u>
 Key length= 20 mm, interference= 0.6 mm
- Vertical cut both in the steel collar and in the iron yoke
- C-clamp mandatory to achieve enough contact pressure at the pole, interference= 0.15 mm

- <u>Bladder & key configuration</u> Key length= 20 mm, interference= 0.4 mm
- Horizontal cut both in the steel collar and in the iron yoke

IVth layer shifted upward by 1 mm Α Peak stress due to the edge IIIrd and IVth layers shifted upward by 1 mm ANSYS R17.1 Academic SEP 29 2016 12:19:36 В PLOT NO.

135 145 1	155 165	175 185 195	205 215	225	_	
		Cable I	(inner)	Cable 2 (outer)		Cable I (inner)
Strand number			2	36		22
Strand diameter			mm	0.712 mm		I.I mm
Bare width			mm	13.5mm		13.2 mm
Bare inner thickness			2 mm	1.225 mm		I.892 mm
Bare outer thickness			2 mm	1.343 mm		2.072 mm
Insulation			mm	0.15 mm		0.15 mm
Keystone angle				0.5°		0.5°
Cu/NCu			85	2.15		0.85
Operating current			80 A	11180A		11200 A
Copper current density			A/mm ²	II43 A/mm ²		II67 A/mm ²
int on LL	(1.9 K)	86	S.Farinon 5%	US-EuroCirCol coordina 86%	tion mee	ting 86%
	135 145 Strand c Strand c Bar are inner t are outer t In Keysto operating c ber current int on LL	135 145 155 165 Strand number Strand diameter Bare width are inner thickness are outer thickness Insulation Keystone angle Cu/NCu perating current oer current density int on LL (1.9 K)	135145155165175185195Cable IStrand number2Strand diameter1.1Bare width13.2are inner thickness1.892are outer thickness2.072Insulation0.15Keystone angle0.Cu/NCu0.perating current1112ber current density1165 /int on LL (1.9 K)86	135145155165175185195205215Cable I (inner)Strand number22Strand diameterI.1 mmBare widthI3.2 mmare inner thicknessI.892 mmare outer thickness2.072 mmInsulation0.15 mmKeystone angle0.5°Cu/NCu0.85perating currentII180 Aoer current densityII65 A/mm²S.FarinonS.Farinon	135 145 155 165 175 185 195 205 215 225 Cable I (inner) Cable 2 (outer) Strand number 22 36 Strand diameter I.1 mm 0.712 mm Bare width I3.2 mm I3.5mm are inner thickness I.892 mm I.225 mm are outer thickness 2.072 mm I.343 mm Insulation 0.15 mm 0.15 mm Keystone angle 0.5° 0.5° Cu/NCu 0.85 2.15 perating current III80 A II180A Insulation II65 A/mm² II43 A/mm² S.Farinon 86% 86%	135 145 155 165 175 185 195 205 215 225 Cable I (inner) Cable 2 (outer) Strand number 22 36 Strand diameter I.1 mm 0.712 mm Bare width I3.2 mm I3.5mm are inner thickness I.892 mm I.225 mm are outer thickness 2.072 mm I.343 mm Insulation 0.15 mm 0.15 mm Keystone angle 0.5° 0.5° Cu/NCu 0.85 2.15 perating current II180 A II180A Insulation II65 A/mm² II43 A/mm² US-EuroCirCol coordination meeting S.Farinon US-EuroCirCol coordination meeting

14

Cable 2 (outer)

36

0.712 mm

13.5mm

I.225 mm

1.343 mm

0.15 mm

0.5°

2.1

11200 A

 1154 A/mm^2

86%

TENSILE STRESS IN THE IRON

Tensile stress peak in the iron ($\sigma_{1 peak}$) ~ 350 MPa

- <u>Bladder & key configuration</u> Key length= 20 mm, interference= 0.5 mm
- Horizontal cut in the steel collar →greater contact pressure at the pole
- Vertical cut in the iron yoke
 →smaller tensile stress on the iron

CONCLUSIONS

- The mechanics of the 16T costheta dipole has been investigated, giving particular importance to the fulfillment of the following requirements: stress on conductors <150 MPa @room temperature, stress on conductors < 200 MPa @cold and contact pressure Ti pole-conductors > 2 MPa after energization.
- Different configurations were considered, among those the more promising were presented:
- CONFIGURATION I- vertical cut in the steel collar and the in the iron yoke •

Bladder&Key + C-clamp mandatory to achieve contact pressure at the pole Almost fulfill stress limits on the conductor Good contact pressure at the pole for all the layers

- CONFIGURATION II horizontal cut in the steel collar and in the iron yoke
 - Almost fulfill stress limits on the conductor
 - Good contact pressure at the pole for all the layers
 - Very high values for tensile stress on the iron (350 MPa)
- CONFIGURATION III- hybrid solutions, horizontal cut in the steel collar and vertical cut in the iron yoke Almost fulfill stress limits on the conductor

Good contact pressure at the pole for all the layers