

Introduction to Nuclear physics;

The nucleus a complex system

Héloïse Goutte CEA, DAM, DIF

Heloise.goutte@cea.fr

· What is the heaviest nucleus?

· How many nuclei do exist?

· What are the shapes of the nuclei?

Ground -state nuclear deformation predicted with the Hartree-Fock-Bogoliubov approach with the Gogny force

I) Some features of the nucleus

The discovery of the nucleus

The structure of the atom was first probed by the Rutherford experiment in 1909. A beam of α particles generated by the radioactive decay of radium was directed onto a sheet of a very thin gold foil.

The unexpected results demonstrated the existence of the atomic nuclei.

The nucleus: a complex system

I) Some features about the nucleus

discovery
radius
binding energy
nucleon-nucleon interaction
life time
applications

II) Modeling of the nucleus

liquid drop shell model mean field

III) Examples of recent studies

exotic nuclei isomers shape coexistence super heavy

IV) Toward a microscopic description of the fission process

Before this exp. people thought that α particles should all be deflected by at most a few degrees.

But some α 's were deflected through angles much larger than 90 degrees !!

- → The results suggest that the greater part of the mass of the atom was concentrated into a very small region.
- >Atoms are almost empty except a hard scattering center: the atomic nuclei

Some questions about the Rutherford experiment

- Why a thin target?
- What about electrons?
- Why in the vacuum?
- How can we determine the size of the atomic nucleus from this experiment?

Some tracks about the Rutherford experiment

• Why a thin target?

To be sure that the projectile do interact with only one nucleus

What about electrons?

Electrons do not affect the trajectory of the projectile which is much heavier

• Why in the vacuum?

In the air, the slowing down of the beam and of the scattered α make the analysis more complicated and can even stop the particles before detection.

 How can we determine the size of the atomic nucleus from this experiment?

At the distance « a_0 » from the center of the nucleus, when the α particle go back :

Coulomb repulsion = kinetic energy of the $\boldsymbol{\alpha}$ particle

$$\frac{1}{2}mv^2 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1q_2}{a_0}$$

The size of the gold nucleus is 2.8 10⁻¹⁴ m

The scale of a nucleus

A nucleus is almost 100000 times smaller than an atom

A nucleus is made of Z protons and N neutrons (the nucleons).

A nucleus is characterized by its mass number A = N + Z and its atomic number Z.

It is written AX.

Do all the nuclei have the same radius?

Nuclear radius

The radius increases with $A^{1/3}$

→ The volume increases with the number of particles

From infinitely small to infinitely large

Nuclear masses

Proton and neutrons are:

hadron particles (particles governed by the strong interaction)

They are baryons (made of 3 quarks)

Proton Neutron uud (charge +e)

udd (charge 0)

Proton and neutron have almost the same mass

$$M_pc^2 = 938.272 \text{ MeV}$$

 $M_nc^2 = 939.565 \text{ MeV}$

2000 times the mass of the e^{-} :

$$M_e c^2 = 0.511$$
 MeV

1 MeV =
$$10^6$$
 eV $M_p = 1.7 \cdot 10^{-27}$ kg

The nuclear interaction is stabilizing the nucleus

Proton -neutron interaction: Vpn > Vnn

Vpp ≅Vnn

PLUS

Coulomb interaction between protons (repulsive)

What about gravitation in a nucleus?

The four elementary interactions

Name	Intensity	bosons	range
strong	1	Gluons	1 fm =10 ⁻¹⁵ m
Electro magnetic	10-2	Photons	infinity
faible	10 ⁻⁵ , 10 ⁻⁶	Leptons	contact
gravitation	10-34	Gravitons?	long

There is no derivation of the nucleon-nucleon interaction from the first principles of the Quanta Chromo Dynamics theory.

Phenomenological parameterization of the interaction;

THIS IS ONE OF THE MOST IMPORTANT PROBLEM NOWADAYS

Binding energy

A stable nucleus is a bound system

i.e. its mass is lower than the mass of its components.

(if not the nucleus would release its excess of energy by spontaneously evolving to a state of lower energy composed of free particles)

Mass of a given nucleus : $M(A,Z) = N M_n + Z M_p - B(A,Z)$

B(A,Z): binding energy

Stable bound system for B > 0

Binding energy per nucleon: $B(A,Z)/A \approx 8 \text{ MeV}$

Binding energy per nucleon

Which nuclei could fission spontaneously?

FISSION

$A \longrightarrow B + C + \Delta E$

Energy balance: $A M_N - B_A = B M_N - B_B + C M_N - B_C + \Delta E$

 $(M_p = M_n = M_N)$

Energy difference : $\Delta E = B_B + B_C - B_A$

FUSION

$$A + B \rightarrow C + \Delta E$$

Energy balance: $A M_N - B_A + B M_N - B_B = C M_N - B_C + \Delta E$

Energy difference : $\Delta E = B_C - B_B - B_A$

Energetic features: fission possible only for elements heavier than Fe. fusion possible for elements lower than Fe;

Some results on stellar nucleosynthesis

Correlation between B/A and abundance

- •The abundance of the elements in the Univers depends on their stability
- •The abundance of the elements in the Univers reflects the nuclear interaction.
- The most abundant element (hydrogen) is also the lighter one
- Fe (the most stable and abundant) is the nucleus at the limit between:
- * the burning by fusion for the elements lighter than Fe
- * the radiative capture of neutrons by elements heavier than Fe.

From E. Gallichet

Nuclear powerplant

Nuclear Life times

A few nuclei are stable: their lifetimes are infinite (comparable to the lifetime of the proton 10^{33} years.)

The others are unstable: they transform into more stable nuclei

Exponential decay

$$\frac{dN}{dt} = -\lambda N(t)$$

Half-life T defined as the time for which the number of remaining nuclei is half of its the initial value.

Different types of radioactivity

Protons

Neutrons

Total versus partial life times

Examples: half lives

Life times span many orders of magnitude:

Nitrogen 16 $T_{1/2} = 7.13 s$

Oxygen 15 = 2.037 mn

Radium 224 = $3.62 \, d$

Carbon 14 = 5730 y

Molybdenum 100 = 10^{19} y

Tellurium 124 = $2.2 \cdot 10^{28} \text{ y}$

Why do the stable nuclei do not follow the N= Z line?

Why do we search for new nuclei?

How do we experimentally study a nucleus?

III) Gamma spectroscopy

1) To excite the nucleus

2) To observe its decay

Œ

Example of a level scheme

The barcode of a nucleus

¹⁴⁸Sm

¹⁶⁰**G**d

Some applications of Nuclear Science

Nuclear physics makes indeed many essential contributions to

- Energy production
 - * Electricity generation
 - * fission: research on
 - * new generations of power plants, new fuel cycles
 - * reduction by transmutation of the long term impact of the nuclear wastes produced (ADS or GEN IV reactors)
 - * fusion for the far future: (ITER project)
- Medicine
 - * diagnostic
 - * detection of the decay of radioactive isotopes SPECT Single Photon Emission Computer Tomography PET Positron Emission Tomography
 - * IRM Imaging by Magnetic Resonance
 - * therapy (proton-, hadron-therapy ...)

Some applications of Nuclear Science (2)

Art and archaeology

- * datation
- * identification of constituent materials (ex : AGLAE Accélérateur Grand Louvre pour l'Analyse Elémentaire)

Environmental studies

* ex: observation of modification of ocean circulation patterns (measurement of ^{129}I / ^{127}I in seawater as a function of depth and distance to the coast)

• ..

From NuPECC long Range Plan 2004

Some features of the nuclei: Summary

- · The existence of the atomic nuclei: the Rutherford experiment in 1909
- The nucleon-nucleon interaction is not precisely known.
- · Many nuclei are predicted but not observed up to now
- Most of them are neutron rich, and are supposed to have played a role during the nucleosynthesis.
- · Nuclei are characterized by their level scheme: their barecode.

Many applications of the nuclear physics