

Jet Substructure "Planning for the future" workshop @ LPC November 30 2016

Higgs as tool for discovery

- · In many **BSM scenarios** the H could be used as tool for discovery new states:
 - · hh, Vh resonance
 - \cdot t' \rightarrow th, b' \rightarrow bh searches
 - χ0→ hG
- · SM decay h→ bb̄ provides the largest branching ratio
 - Boosted topology allows a few handles to suppress dominant multi-jet background
 - · Boosted h→ bb tagger becomes an essential tool for new physics search
 - · In principle the same approach should work for Z to bb and X to bb
- But also h→WW and h→ττ are being exploited
 - · They add sensitivity to searches for new physics states
 - · Dedicated tagging techniques available

h(bb) tagging

BR ~ 58%

The boosted h(bb) signal can be identified by exploiting:

- · large-R jet **mass**
- · the composite nature of the jet using substructure
- **b-tagging** to reconstruct the two B hadrons from the b and b within the same fat jet

I_MASS

CMS Jet Mass Selection

See C. Mantilla's talk

- anti-kt 0.8 jets
- Pruned jet mass is required to be 105 < m < 135 GeV
- Lower bound optimized in the context of VV searches
 - to avoid overlap with VV, HH and VH searches are using this mass window
 - 60% efficiency on h-jets

ATLAS Jet Mass Selection

- anti-kt 1.0 jets
- Trimming
- Muon-in-b-jet correction correcting for semi-leptonic b hadron decays
- Mass windows used are such that the efficiency on h-jets is
 - **90%** (76<m<146)
 - **68%** (93<m<134)

2. SUB-STRUCTURE

CMS, n-jettiness

Simulation

- T2/T1=T21 measures how consistent the jet is with having 2 sub-jets,
- In 2015 CMS analyses used a loose selection
 - 90% efficiency on h-jet
- One of the dominant systematic uncertainty
 - after b-tagging it doesn't add much discrimination
 - some searches use only mass +b-tagging
 B2G-16-003, EXO-16-020

ATLAS, D2 substructure

See C. Mantilla's talk

- Several variables investigated:
- Similar performance across
 - **D2** is chosen due to better modeling in data

Higgs-jet efficiency

3. B-TAGGING

b-tagging, multiple approaches

observables from SV and tracks associated to the fatjet

b-tagging observables for each sub-jet

CMS Run I, fat-jet vs. sub-jet approach

Fat-jet b-tagging works well against udsg but not g(bb)

Sub-jet b-tagging improves discrimination against g(bb) but it depends on pt

At very high p_T jets from h(bb) get too close sub-jet b-tagging loose discrimination against g(bb)

b-tagging, multiple approaches

observables from SV and tracks associated to the fatjet

b-tagging observables for each sub-jet

observables from SV and tracks associated to each τ -axis

- b-tagging two approaches
 - AK0.4/0.2 sub-jets b-tagging (CMS/ATLAS)
 - double-b-tag (CMS)

CMS, double-b tagger

General strategy:

- · Exploit b-tagging to identify both the b and b within the same fat jet
- · Use the Inclusive Vertex Finder algorithm (**IVF**) which identifies secondary vertex independently of jet reconstruction
- · The **double-b** combines tracking and vertexing information in an MVA
- · It targets the bb signal from a resonance, not just the Higgs boson, aiming to be:
 - mass independent
 - easier to validate
 - · can be applied to Z to bb as well as any BSM particles decaying to bb
 - · p_T independent, to better adapt to different kinematic regimes
 - · training is performed using a very wide p_T range for both signal and background
 - · inputs are chosen in order to not have any strong p_T correlation

CMS, Performance

Improved performance with respect to both fat and sub-jet b-tagging At high p_⊤ larger improvement as planned

ATLAS, sub-jet b-tagging

Use **small radius (R=0.2) track jets** to resolve close-by B-hadrons

Advantage of track jets

- Better estimate b-hadron flight direction
- Pile-up resistant
- b-tagging independent of calorimeter jets

ATL-PHYS-PUB-2015-035

Performance

Three working points (WP) defined

Selection	double b -tagging	jet Mass	D2
Loose	70% WP	90\% window, $m \in [76, 146] \text{ GeV}$	-
Medium	70% WP	$68\% \text{ window}, m \in [93, 134] \text{ GeV}$	_
Tight	70% WP	68% window, $m \in [93, 134] \text{ GeV}$	p_{T} -dependent cut

ATL-PHYS-PUB-2015-035

- Systematic uncertainties:
 - b-tagging largest for loose selection
 - Jet energy/mass scale & resolution
 - larger for tight selection

Caterina Vernieri (FNAL)

VALIDATION IN DATA

- We don't have a enough h→ bb̄ in data not even observed yet...
 - · boosted approach could help SM searches too...
- Substrucure and jet mass are monitored using W-jet from tt semileptonic events
 - · we extrapolate for the h case what is measured for W-jets
 - an additional uncertainty to propagate from W-jets to h-jets by comparing PYTHIA 8 and HERWIG++ hadronizers
- b-tagging is calibrated using an enriched sample of g→ b̄b
 - · close-by b-jets topology

CMS, Validation in data

double-b

Double Muon tagged AK8 jets with p_T>300 GeV and jet mass > 50 GeV

- at least 2 muon matched to the fat jet to select QCD gluon splitting more signal-like

sub-jet b-tagging

At least one muon matched to the AK8 jet with p_T >425 GeV

CMS, data/MC SF for the double-b

Loose 0.3 (80%), Medium 0.6 (70%), Tight 0.9 (35%)

Data/MC close to 1 and 7-25% associated uncertainty per AK8 jet Statistical uncertainty is dominant With 2016 dataset it will be reduced

CMS, Sub-jet b-tagging SF

- Validated using **single muon tagged** AK8 jets with $p_T > 425$ GeV ($\tau 21 < 0.5$)
 - Sub-jet validation approach doesn't take into account of two b-tagged sub-jet within the same jet topology
 - two close sub-jets from bb resonance can get close
- Good agreement with SFs for the "standard" anti-k_T R=0.4 jets

CMS DP-2016/042

5-15% uncertainty to be applied once per each b-tagged sub-jet, twice for h to bb 8-30% for h jet in the 2b-category (B2G-16-003)

ATLAS, Validation in data

- g→ bb̄ provides close-by b-jets
 - Double b-tagging systematics for track jets
 - Check modeling of large-R jet substructure variables
 - Cross-check large-R jet energy scale (JES) / jet mass scale

Strategy

- At least one of small radius track jets should be matched to a muon
- Further double b-tagging on small-R track jets to obtain high purity g→ bb̄ samples

Flavor Fraction Correction to MC

- MC does not model the heavy flavor content in data (especially at low pt)
- Fit variable sensitive to flavor composition to data
- Largest track impact parameter significance inside track jet

ATLAS, Validation in data

ATLAS-CONF-2016-002

ATLAS-CONF-2016-002

Modeling is in good agreement within uncertainties

CMS, h→ττ

- High-p_T h→ττ reconstruction is quite challenging
- New developments in Run II:
 - Requiring two sub-jets and then reconstruct the τ within each of them

CMS-DP-2016/038

CMS, **h→WW(4q)**

- t42 works best to discriminate between four-pronged h → WW(4q) and QCD jets.
- The τ42 distribution of HWW jets tends to peak around 0.55.
- By contrast, τ42 distributions of multijet background and W/Z jets have a larger fraction of events at large values of τ42

Summary

- h(bb̄) as tool to discover new physics
 - produced at high p_T
- Higgs tagging as a collection of criteria to identify boosted jets
 - AK8/AK1.0 jet
 - pruned/trimmed mass to reduce pileup and soft radiation effects
 - τ21/D2 to satisfy the two prongs hypothesis
 - jet p_T and mass dependency fixed with appropriate renormalization
 - b-tagging as key element to reduce QCD background
 - Validation in data is done using an enriched gluon splitting sample
 - gluon splitting works very well as proxy for the h to bb in data
 - CMS: Double muon tagged jets for double-b, while for sub-jet b-tagging only single muon selection is used
 - ATLAS: single muon tagged jet + flavor fraction correction
 - Same data sample used to monitor also substructure and jet mass/p_T

Outlook

- Besides h(bb̄) also h(ττ) and h(WW4q) are promising tools for investigating BSM scenarios involving the Higgs boson
 - CMS has made some progress on h(ττ) reconstruction in boosted topology
 - h(WW4q) is a promising addition
 - already investigated in Run I in CMS
 - With more statistic available also WW*→lqq

-BACKUP-

boosted h(bb)

h(bb) from decay of heavy objects is expected to be produced with high pt

fraction of 125 GeV Higgses in fat jet v. p_t

$$dR(b\bar{b}) \sim 2m/p_T$$

The boosted h(bb) signal is expected to be a **single "fat" jet**

Fully contained in a jet of radius:

-
$$R = 1.5$$
 for $H p_T \sim 200 \text{ GeV}$

G.Salam -
$$R = 0.8 \text{ for H p}_T \sim 500 \text{ GeV}$$

Performance/II

Performance against QCD

Improved performance with respect to both fat and sub-jet b-tagging At high p_T larger improvement as aimed

			•		
1			h	leB	
	U	u	U		_

$p_{\rm T}$ (GeV)	300 - 400	400 - 500	500 - 600	600 - 700
ϵ (Data)	0.791 ± 0.072	0.778 ± 0.095	0.699 ± 0.139	0.663 ± 0.173
ϵ (MC)	0.827 ± 0.009	0.792 ± 0.011	0.771 ± 0.009	0.685 ± 0.008
SF	0.956 ± 0.088	0.983 ± 0.121	0.906 ± 0.181	0.969 ± 0.253

DoubleB M

p_{T} (GeV)	300 - 400	400 - 500	500 - 600	600 - 700
ϵ (Data)	0.692 ± 0.069	0.694 ± 0.089	0.607 ± 0.128	0.584 ± 0.120
ϵ (MC)	0.748 ± 0.010	0.698 ± 0.012	0.647 ± 0.013	0.553 ± 0.010
SF	0.926 ± 0.093	0.995 ± 0.129	0.939 ± 0.198	1.055 ± 0.218

DoubleB T

p_{T} (GeV)	300 - 400	400 - 500
ϵ (Data)	0.425 ± 0.045	0.358 ± 0.055
ϵ (MC)	0.469 ± 0.011	0.392 ± 0.013
SF	0.905 ± 0.099	0.913 ± 0.142