Constructing Stable Observables with Energy Correlation Functions

Lina Necib MIT

Based on arXiv:1609.07483 In collaboration with Ian Moult and Jesse Thaler

Jet Substructure

Jet substructure observables play an important role in a variety of searches, e.g. dark matter.

Absolute Performance

Stability in mJ and pTJ

Use more stable substructure observables leads to improved performance. For example, DDT. [Dolen, Harris, Marzani, Rappoccio, Tran 1603.00027]

Theoretical Understanding

Experimental Features

Problem: Unstable Observables

 \bigcirc D₂ is designed from power counting to optimize performance.

[Larkoski, Moult, Neill 1507.03018]

For definitions, see backup slides

3

Problem: Unstable Observables

Stability

○ There are multiple ways we can make stable observables:

Groom away soft radiation

Construct an intrinsically stable observable

N-subjettiness

Further numerical instability can be removed by DDT.

R2D2 tagger

Stability

New energy correlation based observable N₂ parametrically stable with and without grooming!

 \bowtie N₂ power counts similarly as N-subjettiness, but avoids pathological issues with axes.

Strategy 1: Groom away soft radiation Softdrop Pruning Trimming ATLAS used trimming to improve stability of D Mass Drop

03

Strategy 1: Groom away soft radiation

 $M_2^{(\beta)} = \frac{1e_3^{(\beta)}}{(e_2^{(\beta)})}$ $D_2^{(1,2)} = \frac{e_3^{(1)}}{(e_2^{(2)})^{3/2}}$

We can build more observables which are stable after grooming.

Strategy 2: Build a stable observable

 $N_2^{(\beta)} = \frac{2e_3^{(\beta)}}{(e_3^{(\beta)})^2} = \frac{1}{(\beta)^2}$

- Theoretically motivated for a good discrimination R between 1 and 2-prong jets.
- Stable under changes of p_T and mass cuts! R

Further numerical instability can be removed by DDT.

Strategy 2: Build a stable observable

Lina Necib, Planning for the Future, Fermilab

11/30/16

Looking ahead: Correlations

Now we have 3 observables constructed from the same functions.

○ Interesting to think about extending 1-D to 2-D observables.

Top Tagging

Extension of the same observables to 3 prong.

Quark/Gluon discrimination

Quarks and Gluons have different color factors, which allows for discrimination. Probing multiple emissions improves discrimination.

 $U_n^{(\beta)} = {}_1 e_n^{(\beta)}$

This observable is a measure of the ``number" of emissions!

Stability

 \rightarrow

- We have the ability to construct observables with particular parametric features.
- Power counting is a useful diagnostic tool (see backup slides for CMS hybrid strategy).
- We focused on stability because it is of experimental significance.
- Reperimental input is appreciated!

All observables are available in fastjet contrib under EnergyCorrelator 1.2.0

Groom away soft radiation

Construct an intrinsically stable observable

Backup Slides

Exploring Old Angles

From power counting, D_2 is the optimal observable obtained from the ``old" energy correlation functions for 2-prong discrimination.

[Larkoski, Moult, Neill 1507.03018]

- \bowtie From power counting, D₂ is the optimal observables obtain from the ``old" energy correlation functions for 2-prong discrimination.
- □ Indeed it has been adopted at ATLAS.

[Larkoski, Moult, Neill 1507.03018]

Lina Necib, Planning for the Future, Fermilab

22

○ It is used by CMS with a ``hybrid" cut.

[Larkoski, Thaler, Salam 1305.0007]

Lina Necib, Planning for the Future, Fermilab

23

Hybrid cuts

 \bigcirc Strategy adopted by CMS, which makes C₂ perform well.

- Mass cut on the groomed mass.
- R Effectively selects for higher mass.

Lina Necib, Planning for the Future, Fermilab

11/30/16

Hybrid cuts

- Strategy adopted by CMS.
- R Mass cut on the groomed mass.
- Refrectively selects for higher mass.

Hybrid cuts

N-subjettiness

[Thaler, Van Tilburg 1011.2268]

Exploring New Angles

 $e_2^{(\beta)} = \sum z_i z_j \theta_{ij}^{\beta}$ ${}_{1}e_{3}^{(\beta)} = \sum^{i,j} z_{i}z_{j}z_{k}\min(\theta_{ij}^{\beta}, \theta_{kj}^{\beta}, \theta_{ik}^{\beta})$ ${}_{2}e_{3}^{(\beta)} = \sum_{i}^{i,j,k} z_{i}z_{j}z_{k}\min(\theta_{ij}^{\beta}\theta_{kj}^{\beta}, \theta_{ij}^{\beta}\theta_{ik}^{\beta}, \theta_{kj}^{\beta}\theta_{ik}^{\beta})$ i, j, k

Observables of the Day

 \bigcirc But most importantly, N₂ is stable!

$$N_2^{(2),\max} \sim rac{(e_2^{(eta)})^2}{(e_2^{(eta)})^2} \sim {
m const}$$

Lina Necib, Planning fo

0.06

0.05

0.04

0.02

0.01

0.00 0.0

 $_2e_3 0.03$

11/30/16

Signal: $({}_2e_3^{(\beta)}) < (e_2^{(\beta)})^2$

More Observables After Grooming

Rew observables are stable after grooming!

Groomed observables are stable!

Build the same strategy for other searches:

Extending the generalized energy correlation functions from 2 prong, to 3 prong.

Quark/Gluon discrimination

- Reyond Casimir scaling by probing multiple emissions.
- \bowtie U_n asymptotes to a measurement of multiplicity.

Quark/Gluon discrimination

- $U_n^{(\beta)} = {}_1 e_n^{(\beta)}$
- Small beta, small angles, non perturbative regime.
- Stability of U_3 as a function of beta is a great feature. High beta, more control.