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EFT approach
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⇤NP � mh (1)

To eq.(8) I added a (flavour universal) local interaction
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,
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, and therefore to neglect the quadratic
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e = eL, eR, µ = µL, µR (4)

A =i

2m2
Z

vF
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1 Introduction

Cubic and quartic self-interactions of the electroweak gauge bosons are present in the Stan-

dard Model (SM) due to the underlying non-abelian gauge symmetry, and are completely

fixed by the gauge couplings, namely, the electromagnetic coupling constant e and the

weak mixing angle s✓ ⌘ sin ✓W . This, however, is not the case in a general Beyond the

Standard Model (BSM) scenario. Therefore, processes that are sensitive to gauge boson

self-interactions are important tools used to search for nonstandard e↵ects.

In this work we focus on general BSM contributions to the cubic electroweak gauge

bosons interactions, employing the linear E↵ective Field Theory (EFT) framework, also

known as the Standard Model E↵ective Field Theory (SMEFT). In this model-independent

approach, the SM (with the Higgs embedded in an SU(2)L doublet) is extended by non-

renormalizable gauge-invariant operators with canonical dimensions D > 4 which encode

the e↵ects of some new physics with a mass scale ⇤ much larger than the electroweak scale.

The BSM e↵ects are thus organized as an expansion in 1/⇤, and the leading lepton-number-

conserving terms are O(⇤�2) generated by D = 6 operators in the SMEFT Lagrangian:

Le↵ = L
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+
X

i

c(6)i
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O(6)

i +
X

j

c(8)j

⇤4

O(8)

j + . . . . (1.1)

– 1 –

happen that the last two coincide with f⇡ = fh = f and that they are related to the first
one by the constraint ⇤  4⇡f (which is the case in composite Higgs models), the three
scales are in principle independent and associated to di↵erent physical quantities. On top
of this, one should not forget the fine-tuning associated to the EW scale v and parametrised
by ⇠ defined in Eq. (1.4). In practice, the counting rule associated to the HEFT depends
on more than one expansion parameters and may vary depending on the typical energy
scale of the observables considered in the phenomenological analysis.

In conclusion, rather than basing the choice of the NLO Lagrangian operators on a
sophisticated counting rule whose applicability is not valid in full generality, here the
selection is performed with the following strategy. An NLO operator should satisfy at least
one of the criteria below:

- It is necessary for reabsorbing 1-loop divergences arising from the renormalisation of
L0.

- It presents the same suppression as the operators in the first class and receives finite
1-loop contributions: for instance, all the four-fermion operators are included in the
NLO, in spite of the fact that only a subset of these is required to reabsorb 1-loop
divergences.

- It has been left out from the LO Lagrangian due to phenomenological reasons.

The suppression factor of each operator is determined using the NDA master formula,
first proposed in Ref. [34] and later modified in Refs. [35] and [33]. Following the notation
of Ref. [33]:

⇤4
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h y
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, (2.7)

where � represents either the SM GBs or h,  a generic fermion, A a generic gauge field,
g the gauge couplings and y the Yukawa couplings. All the operators appearing in the
LO Lagrangian in Eq. (2.3) are normalised according to this formula, apart from the
operators providing gauge bosons’ masses, (v2/4)Tr(VµVµ)FC(h), and fermions’ masses
(v
p
2) ̄LUY (h) R, which are multiplied by powers of the EW scale v and not by ⇤ or

f as expected. This is due to the well-known fine-tuning, typical of theories where the
EWSB sector is non-linearly realised. Notice that with these conventions all the kinetic
terms are canonically normalised, di↵erently from what follows using the original version
of the NDA master formula from Ref. [34].

The master formula also ensures that the operators belonging to the NLO Lagrangian
are typically suppressed with respect to those of L0 by powers of (4⇡)(n2), reflecting the
renormalisation of the chiral sector, and/or by powers of ⇤(n2), associated to possible new
physics contributions. Di↵erent cases will be discussed when necessary.

2.1 The NLO Lagrangian

The second part of the HEFT Lagrangian, �L , contains in general all the invariant
operators appearing beyond the leading order. They include corrections to the interactions

7

organize operators with some power counting, 
e.g. NDA:
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happen that the last two coincide with f⇡ = fh = f and that they are related to the first
one by the constraint ⇤  4⇡f (which is the case in composite Higgs models), the three
scales are in principle independent and associated to di↵erent physical quantities. On top
of this, one should not forget the fine-tuning associated to the EW scale v and parametrised
by ⇠ defined in Eq. (1.4). In practice, the counting rule associated to the HEFT depends
on more than one expansion parameters and may vary depending on the typical energy
scale of the observables considered in the phenomenological analysis.

In conclusion, rather than basing the choice of the NLO Lagrangian operators on a
sophisticated counting rule whose applicability is not valid in full generality, here the
selection is performed with the following strategy. An NLO operator should satisfy at least
one of the criteria below:

- It is necessary for reabsorbing 1-loop divergences arising from the renormalisation of
L0.

- It presents the same suppression as the operators in the first class and receives finite
1-loop contributions: for instance, all the four-fermion operators are included in the
NLO, in spite of the fact that only a subset of these is required to reabsorb 1-loop
divergences.

- It has been left out from the LO Lagrangian due to phenomenological reasons.

The suppression factor of each operator is determined using the NDA master formula,
first proposed in Ref. [34] and later modified in Refs. [35] and [33]. Following the notation
of Ref. [33]:
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where � represents either the SM GBs or h,  a generic fermion, A a generic gauge field,
g the gauge couplings and y the Yukawa couplings. All the operators appearing in the
LO Lagrangian in Eq. (2.3) are normalised according to this formula, apart from the
operators providing gauge bosons’ masses, (v2/4)Tr(VµVµ)FC(h), and fermions’ masses
(v
p
2) ̄LUY (h) R, which are multiplied by powers of the EW scale v and not by ⇤ or

f as expected. This is due to the well-known fine-tuning, typical of theories where the
EWSB sector is non-linearly realised. Notice that with these conventions all the kinetic
terms are canonically normalised, di↵erently from what follows using the original version
of the NDA master formula from Ref. [34].

The master formula also ensures that the operators belonging to the NLO Lagrangian
are typically suppressed with respect to those of L0 by powers of (4⇡)(n2), reflecting the
renormalisation of the chiral sector, and/or by powers of ⇤(n2), associated to possible new
physics contributions. Di↵erent cases will be discussed when necessary.

2.1 The NLO Lagrangian

The second part of the HEFT Lagrangian, �L , contains in general all the invariant
operators appearing beyond the leading order. They include corrections to the interactions
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organize operators with some power counting, 
e.g. NDA:

More symmetry: more constraints and relations among couplings.

In both cases: EFT description valid for experiments below Λ.
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We are interested in the double-pole part of the on-shell process q q̅’ → 4f

*in the NWA for the vector bosons ΓW / mW ~ 0.02 ≪ 1.

We look directly at the SMEFT. 
Higher dim operators can contribute in many places

The only physical (basis indep.) quantity is the total on-shell amplitude

q q̅’ → V V’take on-shell*
See M. Trott’s talk and 1606.06693.
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In the SMEFT, in any basis, 
assuming vertex (Vff) and oblique corrections vanish*, 

only 3 linear combinations of coefficients remain unconstrained. 
It is always possible to identify those as the 3 aTGC.

* due to EWPD. However, some ZqRqR vertices have still large uncertainties and their impact is important. [Zhang 1610.01618]

We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) e↵ective operators. They can a↵ect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are e↵ectively

controlled by 3 combinations of EFT parameters at O(⇤�2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {�g
1,z, �� ,�z}, defined as

follows [3, 4]:
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q
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�� . These aTGC can be computed in function of

Wilson coe�cients of D = 6 operators in Eq. (1.1), and they are formally of order
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so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. Refs. [1, 5–7]). The dictionary between

the aTGCs and Wilson coe�cients of D = 6 operators in various bases can also be found

in Appendix B (from Ref. [5]).

Any experimental observable (such as di↵erential cross section, number of signal events

in a bin, etc.) obtained from the e↵ective Lagrangian in Eq. (1.1) takes the following form
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(1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result
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It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result

– 2 –

We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) e↵ective operators. They can a↵ect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are e↵ectively

controlled by 3 combinations of EFT parameters at O(⇤�2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {�g
1,z, �� ,�z}, defined as

follows [3, 4]:

L
tgc

= ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
A⌫ + ie

c✓
s✓

(1 + �g
1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+

µ W�
⌫ + ie

c✓
s✓

(1 + �z)Zµ⌫ W
+

µ W�
⌫

+ i
�ze

m2

W


W+

µ⌫W
�
⌫⇢A⇢µ +

c✓
s✓

W+

µ⌫W
�
⌫⇢Z⇢µ

�
, (1.2)

where c✓ =
q

1� s2✓ , �z = �g
1,z � s2✓

c2✓
�� . These aTGC can be computed in function of

Wilson coe�cients of D = 6 operators in Eq. (1.1), and they are formally of order

�g
1,z, �� , �z ⇠ c(6)

m2

W

⇤2

, (1.3)

so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. Refs. [1, 5–7]). The dictionary between

the aTGCs and Wilson coe�cients of D = 6 operators in various bases can also be found

in Appendix B (from Ref. [5]).

Any experimental observable (such as di↵erential cross section, number of signal events

in a bin, etc.) obtained from the e↵ective Lagrangian in Eq. (1.1) takes the following form

� = �SM+
X

i

 
c(6)i

⇤2

�(6⇥SM)

i + h.c.

!
+
X

ij

c(6)i c(6)⇤j

⇤4

�(6⇥6)

ij +
X

j

 
c(8)j

⇤4

�(8⇥SM)

j + h.c.

!
+ . . . .

(1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result

– 2 –



aTGC

6

We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) e↵ective operators. They can a↵ect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are e↵ectively

controlled by 3 combinations of EFT parameters at O(⇤�2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {�g
1,z, �� ,�z}, defined as

follows [3, 4]:

L
tgc

= ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
A⌫ + ie

c✓
s✓

(1 + �g
1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+

µ W�
⌫ + ie

c✓
s✓

(1 + �z)Zµ⌫ W
+

µ W�
⌫

+ i
�ze

m2

W


W+

µ⌫W
�
⌫⇢A⇢µ +

c✓
s✓

W+

µ⌫W
�
⌫⇢Z⇢µ

�
, (1.2)

where c✓ =
q
1� s2✓ , �z = �g

1,z � s2✓
c2✓
�� . These aTGC can be computed in function of

Wilson coe�cients of D = 6 operators in Eq. (1.1), and they are formally of order

�g
1,z, �� , �z ⇠ c(6)

m2

W

⇤2

, (1.3)

so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. Refs. [1, 5–7]). The dictionary between

the aTGCs and Wilson coe�cients of D = 6 operators in various bases can also be found

in Appendix B (from Ref. [5]).

Any experimental observable (such as di↵erential cross section, number of signal events

in a bin, etc.) obtained from the e↵ective Lagrangian in Eq. (1.1) takes the following form

� = �SM+
X

i

 
c(6)i

⇤2

�(6⇥SM)

i + h.c.

!
+
X

ij

c(6)i c(6)⇤j

⇤4

�(6⇥6)

ij +
X

j

 
c(8)j

⇤4

�(8⇥SM)

j + h.c.

!
+ . . . .

(1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result

– 2 –

We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) e↵ective operators. They can a↵ect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are e↵ectively

controlled by 3 combinations of EFT parameters at O(⇤�2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {�g
1,z, �� ,�z}, defined as

follows [3, 4]:

L
tgc

= ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
A⌫ + ie

c✓
s✓

(1 + �g
1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+

µ W�
⌫ + ie

c✓
s✓

(1 + �z)Zµ⌫ W
+

µ W�
⌫

+ i
�ze

m2

W


W+

µ⌫W
�
⌫⇢A⇢µ +

c✓
s✓

W+

µ⌫W
�
⌫⇢Z⇢µ

�
, (1.2)

where c✓ =
q
1� s2✓ , �z = �g

1,z � s2✓
c2✓
�� . These aTGC can be computed in function of

Wilson coe�cients of D = 6 operators in Eq. (1.1), and they are formally of order

�g
1,z, �� , �z ⇠ c(6)

m2

W

⇤2

, (1.3)

so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. Refs. [1, 5–7]). The dictionary between

the aTGCs and Wilson coe�cients of D = 6 operators in various bases can also be found

in Appendix B (from Ref. [5]).

Any experimental observable (such as di↵erential cross section, number of signal events

in a bin, etc.) obtained from the e↵ective Lagrangian in Eq. (1.1) takes the following form

� = �SM+
X

i

 
c(6)i

⇤2

�(6⇥SM)

i + h.c.

!
+
X

ij

c(6)i c(6)⇤j

⇤4

�(6⇥6)

ij +
X

j

 
c(8)j

⇤4

�(8⇥SM)

j + h.c.

!
+ . . . .

(1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result

– 2 –

This is an effective Lagrangian parametrising the 
possible Lorentz structures of triple gauge couplings. 

It can be extended by adding terms with more derivatives:

Gaemers, Gounaris (1979) + Hagiwara at al. (1987)

K. Hagiwara et al. / e + e - --, W ~ W 

v. P - ' ~  = i gww v I-v~" (q,F:::],p) 

~ w ~  
Fig. 2. Feynman rule for the general WWV (V = ~, or Z) vertices. 
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This condi t ion  is automatic  for on-shell W's:  

(m + m 2 w)  W" = O, 8~W" = O. (2.3) 

It also holds for the virtual photon  and is valid for the Z in the process we are 
investigating. Terms containing 3 , Z "  are in fact proport ional  to the electron mass 
and negligible. 

The  lagrangian (2.1) contains 5 operators with dimension four and 2 with 
d imension six. All the higher-dimensional operators for on-shell W's  are obtained 
f rom the operators  in eq. (2.1) simply by replacing V" by t 3 " V "  03 = 82) with an 
arbi t rary  positive integer n. These operators form a complete set* of  W W V  
coupl ings under  the conditions (2.2) and (2.3). Any other operator  can be reduced to 
a combina t ion  of  these**. 

In  m o m e n t u m  space as depicted in fig. 2, the corresponding W W V vertex can be 
expressed as follows 

fv 
r~.(q,  q, P) =fV(q _ q).g~ _ m 2 ( q _ q ) .  p . p ~  + f3v( p . g . ~  _ p~g.o) 

+ i f V (  p ~ g  "# + P a g ' " )  + ifsVe'"BP( q -  ~ ) p  

f v ,  
- f ~ t , ~ # P p p  - m--~w t q - (l ) " e~ap°pp ( q - F1) o , (2.4) 

for V = y ,Z .  Here all the form factors f v are dimensionless functions of p2. The 
expression (2.4) agrees with the one adopted by Gaemers  and Gounaris  [12] apart  
f rom their form factors f v  and f v  which are actually redundant.  This fact is shown 
in appendix  A. 

* If the W's are off mass-shell, additional derivatives D t Wff,t3mW, (1, m integer) complete all possible 
operators. The spin-0 part can still be neglected in so far as the W's couple to massless fermion pairs. 

** It should be kept in mind that the choice of the two dimension-6 operators in (2.1) is not unique. 
Actually, the operators which correspond to the vertex function (2.4) represent another choice. 
However, this nonuniqueness merely amounts to a different p2 dependence of the form factors. 

It is just a way of parametrising 
the 3-point vertex
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Starting from the on-shell amplitude it is also possible to 
define the aTGC as pseudo-observables. Falkowski, Riva 2014

The extension of this approach to LHC introduces more parameters: in progress.
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In the SMEFT (or any other EFT) the aTGC are given by 
combinations of coefficients, for example in the SILH basis:

form,
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(B.4)

where ↵,�, �,’s are numerical O(1) coe�cients (in general depending on s✓) whose exact

values are not relevant for this discussion, and the vectors of Wilson coe�cients are defined

as

cLL = (c̄(3)Hq, c̄
(1)

Hq) ,

cLT = (c̄(3)Hq, c̄
(1)

Hq, c̄HWB, c̄3W ) ,

cTT = (c̄(3)Hq, c̄
(1)

Hq, c̄HWB, c̄
(3)

H`, c̄HD, [c̄``]1221) .

(B.5)

In a similar way we can find how the SILH basis [32] operators a↵ect which helicity am-

plitude by using the map

�g
1z = �g2L + g2Y

g2L � g2Y


g2L � g2Y

g2L
c̄HW + c̄W + c̄

2W +
g2Y
g2L

c̄B +
g2Y
g2L

c̄
2B � 1

2
c̄T

�
,

�� = �c̄HW � c̄HB , �z = �6g2Lc̄3W ,

(B.6)

where we use the notation and normalizations of Ref. [42]. In the SILH basis the helicity

cross sections take the same form as in Eq. (B.4) with c
3W ! g

SM

c
3W and

cLL = (c̄0Hq, c̄Hq, c̄2B, c̄2W , c̄W , c̄B, c̄HB, c̄HW ) ,

cLT = (c̄0Hq, c̄Hq, c̄2B, c̄2W , c̄W , c̄B, c̄HB, c̄HW , c̄
3W ) ,

cTT = (c̄0Hq, c̄Hq, c̄2B, c̄2W , c̄W , c̄B, c̄T ) .

(B.7)
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note that here

and analogous combinations in other basis, like Warsaw, etc..

Not only 3 operators contribute to diboson production!
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Eexp ≪ Λ
From low energy experiments the scale Λ is unknowable: 
depends on the model, not on the data.

What depends on the data is the scale 
which we can probe in a consistent way: Λ ≫ Emax.

Example: from muon decay we can only extract GF, not the value of mW.

Ellis, Sanz 1410.7703; 
Greljo et al. 1512.06135; 

Plehn et al. 1510.03443,1602.05202; 
Contino et al. 1604.06444; 

Falkowski et al. 1609.06312; 
…
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Model 2 is not.
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Ideally the dim-6 interference is expected to dominate, 
while quadratic terms and interference of dim-8 are equally suppressed.

We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) e↵ective operators. They can a↵ect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are e↵ectively

controlled by 3 combinations of EFT parameters at O(⇤�2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {�g
1,z, �� ,�z}, defined as

follows [3, 4]:

L
tgc

= ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
A⌫ + ie

c✓
s✓

(1 + �g
1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+

µ W�
⌫ + ie

c✓
s✓

(1 + �z)Zµ⌫ W
+

µ W�
⌫

+ i
�ze

m2

W


W+

µ⌫W
�
⌫⇢A⇢µ +

c✓
s✓

W+

µ⌫W
�
⌫⇢Z⇢µ

�
, (1.2)

where c✓ =
q

1� s2✓ , �z = �g
1,z � s2✓

c2✓
�� . These aTGC can be computed in function of

Wilson coe�cients of D = 6 operators in Eq. (1.1), and they are formally of order

�g
1,z, �� , �z ⇠ c(6)

m2

W

⇤2

, (1.3)

so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. Refs. [1, 5–7]). The dictionary between

the aTGCs and Wilson coe�cients of D = 6 operators in various bases can also be found

in Appendix B (from Ref. [5]).

Any experimental observable (such as di↵erential cross section, number of signal events

in a bin, etc.) obtained from the e↵ective Lagrangian in Eq. (1.1) takes the following form

� = �SM+
X

i

 
c(6)i

⇤2

�(6⇥SM)

i + h.c.

!
+
X

ij

c(6)i c(6)⇤j

⇤4

�(6⇥6)

ij +
X

j

 
c(8)j

⇤4

�(8⇥SM)

j + h.c.

!
+ . . . .

(1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result
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Figure 1: We show the dependence of the �(pp ! WW ) (left) and �(pp ! WZ) (middle)

on the anomalous triple gauge couplings, �z (black), �g
1,z (blue), and �� (red). One

parameter is varied at a time while the other two are set to zero. In the left and center

panels the solid (dashed) lines correspond to the cases with mV V (⌘
p
ŝ) < 1 (600 GeV).

In the right panel, instead, only high energy events (mV V > 600 GeV) are shown, using

solid (dotted) lines for pp ! WZ(WW ).

will be rather weakly constrained. We also observe that the WZ channel seems to be more

sensitive than the WW one, at least concerning �z and �g
1,z.

The solid lines, which represent the total cross-sections without any cut, show clearly

that the quadratic terms in Eq. (2.1) are not negligible at all. Taking into account that

the typical experimental precision in this observable is in the few per-cent ballpark, one

can see that the extracted aTGC bounds will be completely dominated by these quadratic

e↵ects. As briefly discussed in the Introduction, this is somewhat expected given the high

energy scales probed by these processes. In the case of �z it is striking to notice that the

interference term is almost vanishing. This can be understood by studying the relevant

SM and BSM helicity amplitudes, and is discussed in Section 2.3.

In order to analyze the e↵ect of removing the events in the high energy tail, the dashed

lines in the left and center panels of Fig. 1 show the weakened sensitivity when the cross

sections are obtained using only the events with
p
ŝ < 600 GeV. Although the e↵ect of

the cut is clearly visible, the quadratic e↵ects still remain very important. We have also

checked that this is still true for a cut as low as 300 GeV. For completeness, in the right

panel we show with solid (dotted) lines the WZ (WW ) cross section for high-energy events

(
p
ŝ > 600 GeV) only. It is clear that in this region the quadratic terms largely dominate

over the linear ones, as expected. The situation is further complicated by the fact that

imposing this type of cut on the real data is by no means easy, as we discuss in the next

section.

2.2 Limiting the physical scale of the process

As already mentioned, the relevant energy scale of diboson production processes is the V V

invariant mass,
p
ŝ (⌘ mV V ). The di↵erential cross section, d�/dmV V , is therefore a very

sensitive probe to new physics e↵ects, and has the potential to disentangle the di↵erent
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In practice: even with a few-
percent precision, quadratic 
terms dominate. 

Neglected interference of dim-8 
could have a sizeable impact.

The analysis will be valid only for those models 
where dim-8 do not conspire in such a way, e.g. if:

D⌫W a
⌫µ = � ig

2
(H†�a

$
DµH)� g

2

 
X

i

Q̄i�µ�
aQi + L̄i�µ�

aLi

!
+O(1/⇤2) (1)

Ja
µ (2)

ig(H†�a
$
DµH)Ja

µ (3)

�g
1,z, �� , �z (4)

hVµ(�q)V 0
⌫(q)i / ⇧V V 0(q2) (5)

mV V < mmax

V V (6)

Ŝ = a
m2

W

m2

⇢
(7)

c
(6)

i ⇠ c
(8)

j ⇠ g2⇤ � 1 (8)

1
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Imposing a form-factor-like suppression to EFT coefficients in order to 
avoid unitarity violations at scales E ~ Λ corresponds to choosing some 
specific UV model.

It is then difficult (impossible) to interpret results of such 
analyses in a model-independent way.

Problems with unitarization of the scattering amplitudes start to appear at the 
scale Λ, i.e. where the EFT ceases to be a valid description. 
If the experimental analysis is sensitive to such effects, then 
the EFT approach is not a good one to interpret the data.

When doing EFT, worry about EFT validity, not about unitarity.

Any EFT is valid only for Eexp ≪ Λ
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Ideally, one would like to fix the perfect value of Emax for each Λ considered, 
in order to maximise sensitivity while retaining consistency.

In practice, the experimental analysis could be done 
for a few different values of Emax.

In diboson production the relevant variable is

H =

 
0

v+hp
2

!
(1)

c

⇤2
⇠ const (2)

p
ŝ = mV V (3)

1

However, in WW (2ℓ2ν) this is not available, 
while in WZ (3ℓν) it has a bad resolution.

We need a proxy, ideally with the best correlation possible: 
maybe mℓℓ or mTWZ ?
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Figure 2: Left: Event distribution in the plane of the invariant mass of dilepton system,

m`` (which is reported by the experiment) versus mWW (which corresponds to
p
ŝ.). Right:

Similar plot for mWZ
T vs mWZ . Both histograms are based on 5⇥ 105 events.

By applying the mV V cut on the BSM events, at the simulation level, we split �
BSM

=

�
mV V <mmax

V V
BSM

+�
mV V >mmax

V V
BSM

. If both these terms are positive (or both negative2) and as long

as no significant excess is observed, then from the inequalities in eq. (2.4) follows

�obs � �
SM

��� < �
mV V <mmax

V V
BSM

< �obs � �
SM

+�� . (2.5)

Under the above-mentioned assumptions, the resulting constraint on �
mV V <mmax

V V
BSM

provides

a conservative bound on the EFT parameters, with the first inequality trivially satisfied.

Note that the positivity assumption is not necessarily realized in general. The BSM

contributions are schematically given by

�
BSM

/ (A⇤
SM

A
BSM

+ h.c.) + |ABSM |2 , (2.6)

and can be negative if the interference terms dominates and is negative. However, as

discussed in the previous section, in the parameter space where the BSM e↵ects are large

enough to be observable, the quadratic terms typically dominate the low-energy part of

the cross-section where the EFT approach is reliable. Assuming also dim-8 contribution

to be sub-leading implies �
mV V <mmax

V V
BSM

is positive. Furthermore, for large invariant masses

(where the EFT is no longer valid) one would naively expect that the interference e↵ect in

this region is generally small due to a relatively small A
SM

, which may justify assuming a

positive �
mV V >mmax

V V
BSM

. This can be explicitly seen in the right panel of Fig. 1, which shows

how the quadratic terms dominate in the high invariant mass region.

In case an excess is observed, hinting a possible new resonance, the above strategy

fails to provide a reasonable bound. For instance, while the EFT cross section with the

cut, �
mV V <mmax

V V
BSM

, excludes the events beyond mmax

V V , the data, �
obs

, would include the entire

2The inequality of Eq. (2.5) in this case is switched and a similar discussion applies. The procedure

presented in Section 3 to set conservative bounds works for either sign (both positive or both negative)

when no significant excess is observed.
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mWZ vs. pTZ inWZ production in the SM

How can we impose the cut on mVV if no variable is correlated enough with it? 
Same problem appeared in LHC DM searches with the EFT approach.

A cut on any of these variables will 
still allow a large fraction of 

(unwanted) high-energy events.

Proposal for WZ (3ℓν): cut data using the available 
mWZ resolution, then analyse the mTWZ distribution.

Racco, Wulzer, Zwirner 1502.04701
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Simplified scenario

aTGC parameters. A few challenges arise in consistently setting limits on BSM from data.

First, the EFT approach is only valid su�ciently below a cut-o↵ scale corresponding to the

mass of new states. Since such scale is not known a priori, various choices of cut-o↵ scales

need to be implemented while setting limits within the EFT framework. Ideally, if the full

invariant mass of the V V system (or equivalently
p
ŝ) could be reconstructed from data,

one would impose an appropriate cut on mV V on both data and simulated events, allowing

to build the likelihood using expected and observed cross sections with the cuts, i.e.

(�
SM

+ �
BSM

)(mV V < mmax

V V ) , �
obs

(mV V < mmax

V V ) . (2.2)

In this way one would derive bounds consistently, with the EFT applicable to theories in

which new states are heavier than mmax

V V . Note that �
BSM

in Eq. 2.2 denotes the full BSM

e↵ect which generally includes also the interference between SM and BSM amplitudes and

is thus not necessarily positive.

However, in realistic analyses this approach is limited by the incapability of recon-

structing the full invariant mass of the diboson system when one or both gauge bosons

decay into neutrinos.1 In this case other observables, which we generically denote as Mvis,

are constructed from the available information in the final state. For example, these can be

the dilepton invariant mass m`` in the case of WW [17], the transverse mass mWZ
T in the

case of WZ production [26, 27], or the transverse momentum of a gauge boson pT (V ) [28].

The problem with this approach is that all these observables exhibit a poor correlation

with the physically relevant scale mV V , as can be seen from Fig. 2 for m`` (left) and mWZ
T

(right). A similar situation is present also for pT (V ). As a consequence, the cut on mV V

does not simply map onto a corresponding cut on Mvis:
Z mmax

V V

0

dmV V
d�

dmV V
6⇡

Z Mcut
vis

0

dMvis
d�

dMvis
, (2.3)

for any values of M cut
vis .

Such a poor correlation implies that imposing a cut on Mvis does not remove all – or

at least a significant fraction of – the events from the region with mV V > mmax

V V , resulting

in an inconsistent EFT interpretation. A very similar problem is present in the case of

LHC dark matter searches within the EFT approach. Also in that case the invariant mass

of the system is not observable due to the missing energy, and the available observables

are, in general, poorly correlated with it [29].

In this situation one can still set conservative bounds on the EFT parameters, imposing

the EFT cut mmax

V V only on the simulated BSM events (not on the SM) and comparing with

the observed events. A simple way to understand this approach is to simplify the �2

analysis by approximating that the 68%CL bound comes from comparing the measured

cross section in a given bin of the experimentally accessible distribution, �obs ±��, with

the expected one, �
SM

+�
BSM

, and requiring the latter to be within the experimental error,

namely

�obs ��� < �
SM

+ �
BSM

< �obs +�� . (2.4)

1The ATLAS analysis at
p
s = 7 TeV does consider the full reconstruction of mWZ [28] but the mWZ

resolution is low due to the low resolution on Emiss

T .
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Figure 2: Left: Event distribution in the plane of the invariant mass of dilepton system,

m`` (which is reported by the experiment) versus mWW (which corresponds to
p
ŝ.). Right:

Similar plot for mWZ
T vs mWZ . Both histograms are based on 5⇥ 105 events.

By applying the mV V cut on the BSM events, at the simulation level, we split �
BSM

=

�
mV V <mmax

V V
BSM

+�
mV V >mmax

V V
BSM

. If both these terms are positive (or both negative2) and as long

as no significant excess is observed, then from the inequalities in eq. (2.4) follows

�obs � �
SM

��� < �
mV V <mmax

V V
BSM

< �obs � �
SM

+�� . (2.5)

Under the above-mentioned assumptions, the resulting constraint on �
mV V <mmax

V V
BSM

provides

a conservative bound on the EFT parameters, with the first inequality trivially satisfied.

Note that the positivity assumption is not necessarily realized in general. The BSM

contributions are schematically given by

�
BSM

/ (A⇤
SM

A
BSM

+ h.c.) + |ABSM |2 , (2.6)

and can be negative if the interference terms dominates and is negative. However, as

discussed in the previous section, in the parameter space where the BSM e↵ects are large

enough to be observable, the quadratic terms typically dominate the low-energy part of

the cross-section where the EFT approach is reliable. Assuming also dim-8 contribution

to be sub-leading implies �
mV V <mmax

V V
BSM

is positive. Furthermore, for large invariant masses

(where the EFT is no longer valid) one would naively expect that the interference e↵ect in

this region is generally small due to a relatively small A
SM

, which may justify assuming a

positive �
mV V >mmax

V V
BSM

. This can be explicitly seen in the right panel of Fig. 1, which shows

how the quadratic terms dominate in the high invariant mass region.

In case an excess is observed, hinting a possible new resonance, the above strategy

fails to provide a reasonable bound. For instance, while the EFT cross section with the

cut, �
mV V <mmax

V V
BSM

, excludes the events beyond mmax

V V , the data, �
obs

, would include the entire

2The inequality of Eq. (2.5) in this case is switched and a similar discussion applies. The procedure

presented in Section 3 to set conservative bounds works for either sign (both positive or both negative)

when no significant excess is observed.
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V V . Note that �
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in Eq. 2.2 denotes the full BSM

e↵ect which generally includes also the interference between SM and BSM amplitudes and

is thus not necessarily positive.

However, in realistic analyses this approach is limited by the incapability of recon-

structing the full invariant mass of the diboson system when one or both gauge bosons

decay into neutrinos.1 In this case other observables, which we generically denote as Mvis,

are constructed from the available information in the final state. For example, these can be

the dilepton invariant mass m`` in the case of WW [17], the transverse mass mWZ
T in the

case of WZ production [26, 27], or the transverse momentum of a gauge boson pT (V ) [28].

The problem with this approach is that all these observables exhibit a poor correlation

with the physically relevant scale mV V , as can be seen from Fig. 2 for m`` (left) and mWZ
T

(right). A similar situation is present also for pT (V ). As a consequence, the cut on mV V
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Such a poor correlation implies that imposing a cut on Mvis does not remove all – or

at least a significant fraction of – the events from the region with mV V > mmax

V V , resulting

in an inconsistent EFT interpretation. A very similar problem is present in the case of

LHC dark matter searches within the EFT approach. Also in that case the invariant mass

of the system is not observable due to the missing energy, and the available observables

are, in general, poorly correlated with it [29].

In this situation one can still set conservative bounds on the EFT parameters, imposing

the EFT cut mmax

V V only on the simulated BSM events (not on the SM) and comparing with

the observed events. A simple way to understand this approach is to simplify the �2

analysis by approximating that the 68%CL bound comes from comparing the measured

cross section in a given bin of the experimentally accessible distribution, �obs ±��, with

the expected one, �
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, and requiring the latter to be within the experimental error,

namely
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1The ATLAS analysis at
p
s = 7 TeV does consider the full reconstruction of mWZ [28] but the mWZ

resolution is low due to the low resolution on Emiss

T .

– 6 –

The 68%CL limit is given by:

Simplified scenario

aTGC parameters. A few challenges arise in consistently setting limits on BSM from data.

First, the EFT approach is only valid su�ciently below a cut-o↵ scale corresponding to the

mass of new states. Since such scale is not known a priori, various choices of cut-o↵ scales

need to be implemented while setting limits within the EFT framework. Ideally, if the full

invariant mass of the V V system (or equivalently
p
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Figure 2: Left: Event distribution in the plane of the invariant mass of dilepton system,

m`` (which is reported by the experiment) versus mWW (which corresponds to
p
ŝ.). Right:

Similar plot for mWZ
T vs mWZ . Both histograms are based on 5⇥ 105 events.

By applying the mV V cut on the BSM events, at the simulation level, we split �
BSM

=

�
mV V <mmax

V V
BSM

+�
mV V >mmax

V V
BSM

. If both these terms are positive (or both negative2) and as long

as no significant excess is observed, then from the inequalities in eq. (2.4) follows

�obs � �
SM

��� < �
mV V <mmax

V V
BSM

< �obs � �
SM

+�� . (2.5)

Under the above-mentioned assumptions, the resulting constraint on �
mV V <mmax

V V
BSM

provides

a conservative bound on the EFT parameters, with the first inequality trivially satisfied.

Note that the positivity assumption is not necessarily realized in general. The BSM

contributions are schematically given by

�
BSM

/ (A⇤
SM

A
BSM

+ h.c.) + |ABSM |2 , (2.6)

and can be negative if the interference terms dominates and is negative. However, as

discussed in the previous section, in the parameter space where the BSM e↵ects are large

enough to be observable, the quadratic terms typically dominate the low-energy part of

the cross-section where the EFT approach is reliable. Assuming also dim-8 contribution

to be sub-leading implies �
mV V <mmax

V V
BSM

is positive. Furthermore, for large invariant masses

(where the EFT is no longer valid) one would naively expect that the interference e↵ect in

this region is generally small due to a relatively small A
SM

, which may justify assuming a

positive �
mV V >mmax

V V
BSM

. This can be explicitly seen in the right panel of Fig. 1, which shows

how the quadratic terms dominate in the high invariant mass region.

In case an excess is observed, hinting a possible new resonance, the above strategy

fails to provide a reasonable bound. For instance, while the EFT cross section with the

cut, �
mV V <mmax

V V
BSM

, excludes the events beyond mmax

V V , the data, �
obs

, would include the entire

2The inequality of Eq. (2.5) in this case is switched and a similar discussion applies. The procedure

presented in Section 3 to set conservative bounds works for either sign (both positive or both negative)

when no significant excess is observed.
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aTGC parameters. A few challenges arise in consistently setting limits on BSM from data.

First, the EFT approach is only valid su�ciently below a cut-o↵ scale corresponding to the

mass of new states. Since such scale is not known a priori, various choices of cut-o↵ scales

need to be implemented while setting limits within the EFT framework. Ideally, if the full

invariant mass of the V V system (or equivalently
p
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Figure 2: Left: Event distribution in the plane of the invariant mass of dilepton system,

m`` (which is reported by the experiment) versus mWW (which corresponds to
p
ŝ.). Right:

Similar plot for mWZ
T vs mWZ . Both histograms are based on 5⇥ 105 events.

By applying the mV V cut on the BSM events, at the simulation level, we split �
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=
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V V
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. If both these terms are positive (or both negative2) and as long

as no significant excess is observed, then from the inequalities in eq. (2.4) follows
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Under the above-mentioned assumptions, the resulting constraint on �
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V V
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provides

a conservative bound on the EFT parameters, with the first inequality trivially satisfied.

Note that the positivity assumption is not necessarily realized in general. The BSM

contributions are schematically given by
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and can be negative if the interference terms dominates and is negative. However, as

discussed in the previous section, in the parameter space where the BSM e↵ects are large

enough to be observable, the quadratic terms typically dominate the low-energy part of
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to be sub-leading implies �
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is positive. Furthermore, for large invariant masses

(where the EFT is no longer valid) one would naively expect that the interference e↵ect in

this region is generally small due to a relatively small A
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, which may justify assuming a

positive �
mV V >mmax

V V
BSM

. This can be explicitly seen in the right panel of Fig. 1, which shows

how the quadratic terms dominate in the high invariant mass region.

In case an excess is observed, hinting a possible new resonance, the above strategy

fails to provide a reasonable bound. For instance, while the EFT cross section with the

cut, �
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, excludes the events beyond mmax

V V , the data, �
obs

, would include the entire
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(right). A similar situation is present also for pT (V ). As a consequence, the cut on mV V

does not simply map onto a corresponding cut on Mvis:
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Z Mcut
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d�
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for any values of M cut
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Such a poor correlation implies that imposing a cut on Mvis does not remove all – or

at least a significant fraction of – the events from the region with mV V > mmax

V V , resulting
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LHC dark matter searches within the EFT approach. Also in that case the invariant mass

of the system is not observable due to the missing energy, and the available observables

are, in general, poorly correlated with it [29].

In this situation one can still set conservative bounds on the EFT parameters, imposing

the EFT cut mmax

V V only on the simulated BSM events (not on the SM) and comparing with

the observed events. A simple way to understand this approach is to simplify the �2

analysis by approximating that the 68%CL bound comes from comparing the measured

cross section in a given bin of the experimentally accessible distribution, �obs ±��, with

the expected one, �
SM

+�
BSM

, and requiring the latter to be within the experimental error,

namely

�obs ��� < �
SM

+ �
BSM

< �obs +�� . (2.4)

1The ATLAS analysis at
p
s = 7 TeV does consider the full reconstruction of mWZ [28] but the mWZ

resolution is low due to the low resolution on Emiss

T .
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ŝ) could be reconstructed from data,

one would impose an appropriate cut on mV V on both data and simulated events, allowing

to build the likelihood using expected and observed cross sections with the cuts, i.e.

(�
SM

+ �
BSM

)(mV V < mmax

V V ) , �
obs

(mV V < mmax

V V ) . (2.2)

In this way one would derive bounds consistently, with the EFT applicable to theories in

which new states are heavier than mmax

V V . Note that �
BSM

in Eq. 2.2 denotes the full BSM

e↵ect which generally includes also the interference between SM and BSM amplitudes and

is thus not necessarily positive.

However, in realistic analyses this approach is limited by the incapability of recon-

structing the full invariant mass of the diboson system when one or both gauge bosons

decay into neutrinos.1 In this case other observables, which we generically denote as Mvis,

are constructed from the available information in the final state. For example, these can be

the dilepton invariant mass m`` in the case of WW [17], the transverse mass mWZ
T in the

case of WZ production [26, 27], or the transverse momentum of a gauge boson pT (V ) [28].

The problem with this approach is that all these observables exhibit a poor correlation

with the physically relevant scale mV V , as can be seen from Fig. 2 for m`` (left) and mWZ
T

(right). A similar situation is present also for pT (V ). As a consequence, the cut on mV V

does not simply map onto a corresponding cut on Mvis:
Z mmax

V V

0

dmV V
d�

dmV V
6⇡

Z Mcut
vis

0

dMvis
d�

dMvis
, (2.3)

for any values of M cut
vis .

Such a poor correlation implies that imposing a cut on Mvis does not remove all – or

at least a significant fraction of – the events from the region with mV V > mmax

V V , resulting

in an inconsistent EFT interpretation. A very similar problem is present in the case of

LHC dark matter searches within the EFT approach. Also in that case the invariant mass

of the system is not observable due to the missing energy, and the available observables

are, in general, poorly correlated with it [29].

In this situation one can still set conservative bounds on the EFT parameters, imposing

the EFT cut mmax

V V only on the simulated BSM events (not on the SM) and comparing with

the observed events. A simple way to understand this approach is to simplify the �2

analysis by approximating that the 68%CL bound comes from comparing the measured

cross section in a given bin of the experimentally accessible distribution, �obs ±��, with

the expected one, �
SM

+�
BSM

, and requiring the latter to be within the experimental error,

namely

�obs ��� < �
SM

+ �
BSM

< �obs +�� . (2.4)

1The ATLAS analysis at
p
s = 7 TeV does consider the full reconstruction of mWZ [28] but the mWZ

resolution is low due to the low resolution on Emiss

T .

– 6 –

includes both interference and quadratic terms

1

10

210

310

410

 [GeV]WWm
100 200 300 400 500 600 700 800 900 1000

 [G
eV

]
ll

m

0

100

200

300

400

500

600

700

800

900

1000

, 8TeVνlν l→SM WW

1

10

210

310

410

 [GeV]WZm
100 200 300 400 500 600 700 800 900 1000

 [G
eV

]
TW

Z
m

0

100

200

300

400

500

600

700

800

900

1000

ll, 8TeVν l→SM WZ

Figure 2: Left: Event distribution in the plane of the invariant mass of dilepton system,

m`` (which is reported by the experiment) versus mWW (which corresponds to
p
ŝ.). Right:

Similar plot for mWZ
T vs mWZ . Both histograms are based on 5⇥ 105 events.

By applying the mV V cut on the BSM events, at the simulation level, we split �
BSM

=

�
mV V <mmax

V V
BSM

+�
mV V >mmax

V V
BSM

. If both these terms are positive (or both negative2) and as long

as no significant excess is observed, then from the inequalities in eq. (2.4) follows

�obs � �
SM

��� < �
mV V <mmax

V V
BSM

< �obs � �
SM

+�� . (2.5)

Under the above-mentioned assumptions, the resulting constraint on �
mV V <mmax

V V
BSM

provides

a conservative bound on the EFT parameters, with the first inequality trivially satisfied.

Note that the positivity assumption is not necessarily realized in general. The BSM

contributions are schematically given by

�
BSM

/ (A⇤
SM

A
BSM

+ h.c.) + |ABSM |2 , (2.6)

and can be negative if the interference terms dominates and is negative. However, as

discussed in the previous section, in the parameter space where the BSM e↵ects are large

enough to be observable, the quadratic terms typically dominate the low-energy part of

the cross-section where the EFT approach is reliable. Assuming also dim-8 contribution

to be sub-leading implies �
mV V <mmax

V V
BSM

is positive. Furthermore, for large invariant masses

(where the EFT is no longer valid) one would naively expect that the interference e↵ect in

this region is generally small due to a relatively small A
SM

, which may justify assuming a

positive �
mV V >mmax

V V
BSM

. This can be explicitly seen in the right panel of Fig. 1, which shows

how the quadratic terms dominate in the high invariant mass region.

In case an excess is observed, hinting a possible new resonance, the above strategy

fails to provide a reasonable bound. For instance, while the EFT cross section with the

cut, �
mV V <mmax

V V
BSM

, excludes the events beyond mmax

V V , the data, �
obs

, would include the entire

2The inequality of Eq. (2.5) in this case is switched and a similar discussion applies. The procedure

presented in Section 3 to set conservative bounds works for either sign (both positive or both negative)

when no significant excess is observed.
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enough to be observable, the quadratic terms typically dominate the low-energy part of

the cross-section where the EFT approach is reliable. Assuming also dim-8 contribution

to be sub-leading implies �
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(where the EFT is no longer valid) one would naively expect that the interference e↵ect in

this region is generally small due to a relatively small A
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, which may justify assuming a

positive �
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how the quadratic terms dominate in the high invariant mass region.

In case an excess is observed, hinting a possible new resonance, the above strategy
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If both terms are positive* and no significant excess from the SM is observed 
then removing the high-E part provides conservative limits on the coefficients.

* in practice in LHC diboson production the interference with SM is small, BSM is dominated by quadratic terms.

Fix a maximum energy for the BSM part:

H =

 
0

v+hp
2

!
(1)

c

⇤2
⇠ const (2)

p
ŝ = mV V (3)

�BSM = �
mV V <mmax

V V
BSM + �

mV V >mmax

V V
BSM (4)

1
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We recast some WW and WZ ATLAS and CMS 8 and 13TeV analyses 
fixing different mVVmax cuts.

Figure 5: 68% CL region from 8 TeV ATLAS pp ! W±Z searches for di↵erent mWZ

cuts.
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Figure 6: 68% CL region from 13 TeV ATLAS pp ! W±Z searches for di↵erent mWZ

cuts.

Figure 7: Combined 68% CL region from CMSWW (8 TeV) and ATLASWZ (8+13 TeV)

searches for di↵erent mV V cuts.

(strong) aTGC limits are mainly due to large quadratic terms (C(bin)

ab ) in Eq. (3.2), and

thus assume implicitly negligible contributions from linear dim-8 terms.
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For example:

Validation: the red limits (no cuts) are in agreement with 
those from the collaborations and from other th. fits.
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Model with a vector triplet + singlet. No vertex corrections, at low energy only
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Figure 8: Limits on the H coupling as a function of vector boson mass in the model

discussed in this section. Di↵erent lines correspond to 0H = 3H (red), 0H = H (brown),

and 0H = �3H (orange). The solid lines turn into dashed ones at the scale when the UV

model becomes non-perturbative, which we estimate as the scale where the total width of

at least one of the heavy vectors exceeds mV /2. The blue region is the parameter space

excluded by recasting the EFT limits on �g
1,z as limits on H/mV using the matching in

Eq. (4.5).

be even larger. For a lower cut-o↵, the limits on BSM models derived by recasting limits

on the aTGC may have an order 1 error. Since the parameters of the low-energy EFT at

the leading order depend on the cut-o↵ as 1/⇤2, they carry a large suppression factor for

⇤ & 3 TeV. Given that the diboson measurements are currently sensitive to the aTGC

of order 0.01, only rather strongly coupled UV theories can be e�ciently constrained by

the LHC using the EFT approach. This can be seen in Fig. 8, where only H & 3 can

be probed in the EFT validity regime of the LHC. Even larger couplings are needed if the

aTGC are induced at the 1-loop level. Obviously, when the couplings are too large the

UV model becomes non-perturbative, and then this particular description is no longer a

useful UV completion. In this example the onset of a non-perturbative behavior occurs

for H between 2 and 5, depending on 0H . Thus, the parameter window where the EFT

description is useful is rather limited, at least for this particular UV completion.

5 Conclusions

On the one hand, it is well known that the EFT interpretation of (relatively) high-pT
processes at the LHC – such as diboson production, associated and VBF Higgs production,

or even dark matter searches – presents some challenges. On the other hand, the large
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One can show that this tuning ensures that the couplings of the light gauge boson eigen-

states (identified with the SM gauge bosons) to the fermions are not shifted at tree level

from their SM value.8

With these conditions imposed, the parameters space is 3-dimensional and can be

characterized by the couplings H , 0H and the mass mV . The latter is approximately the

mass of the two neutral and one charged heavy vector eigenstates, up to small corrections

of order v4/m4

V . In the low-energy EFT below the scale mV one finds aTGC of the SM

gauge bosons described by9

�g
1,z = �2H

m2

W

2s2✓m
2

V

+O(m�4

V ), (4.5)

while �� = �z = 0 at tree level. Note that �g
1,z is sensitive to the UV physics only via the

combination H/mV , and is independent of 0H . Thus, for large mV , diboson production at

the LHC is sensitive only to this particular combination. On the other hand, for mV in the

kinematic range of the LHC all the 3 parameters can be probed via diboson production.

We are ready to discuss the validity range of the EFT for the model described above.

We will illustrate the quantitative determination of the validity range using as example the

limits set by the CMS analysis of W+W� production at
p
s = 8 TeV [17]. The results are

summarized in Fig. 8. We plot the direct limits on the parameter H as a function of mV

for three di↵erent choices of the ratio 0H/H . Since the aTGC in the leading-order SMEFT

is independent of 0H we expect that, for large enough mV , the limits are independent of

that ratio. This is indeed the case for mV & 3 TeV. On the other hand, for mV . 3 TeV,

when the new vectors enter the kinematic range of the
p
s = 8 TeV LHC, the limits on H

may easily vary by a factor of 2 depending on 0H .

In Fig. 8 we also show the parameter space excluded by recasting EFT limits on

aTGCs using Eq. (4.5) and the bounds obtained without any upper cut on mWW . In this

case, the limits, by construction, are independent of 0H . As expected, the EFT and the

direct approach yield consistent limits for mV & 3 TeV. Therefore, the scale of 3 TeV is an

approximate lower limit on the EFT cut-o↵ ⇤ such that, for this particular UV completion,

the SMEFT provides a valid description of diboson production at the
p
s = 8 TeV LHC.

Note that, for this example, the true (direct) limits are always stronger than the ones

derived indirectly by recasting the limits on the aTGC. Thus, the EFT approach provides

a conservative limit on the parameters, even without restricting the kinematic range of

experimental data used in the analysis.

This example suggests that diboson measurements at the
p
s = 8 TeV LHC can be

adequately described using the SMEFT provided the EFT cut-o↵ (or the scale of the BSM

particles) is at least 3 TeV. For
p
s = 13 TeV LHC the necessary cut-o↵ is expected to

8There remains a correction to GF which, indirectly, also a↵ects the measured value of the gauge

couplings to fermions. To get rid of it, one needs to invoke another fine-tuned UV contribution to the

4-fermion operator (¯̀
1

�̄µ`2)(¯̀2�̄µ`1) responsible for the muon beta decay from which GF is extracted. For

this reason we do not consider its contribution to �g
1,z, even though according to the matching of Eq. (B.3)

it should be there.
9In this EFT there are also corrections to the Higgs couplings (which depend also on the combination

0
H/mV ), but they are not important for the following discussion.
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Different lines: limits obtained 
simulating directly the model 
with different parameters with 

same low energy EFT.

Limits from EFT (no high-E cut) 
from CMS WW @ 8TeV.

Only for masses ≳ 3TeV the EFT and model limits are compatible. 
In this case the EFT gives always conservative limits, not always so lucky.
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• aTGC offer an efficient parametrization of BSM in diboson 
production within an EFT setup, if vertex corrections can 
be taken SM-like. 

• It is important to take control of the EFT validity by doing 
analyses with different cuts on the invariant mass: 
relevant impact at the interpretation level. 

• Violation of unitarity is not a problem if the EFT approach 
itself can be applied.


