

CROESO i CERN Welcome to CERN

Labordy Ffiseg Mwya'r Byd The World's Largest Particle Physics Laboratory

Dr. Rhodri Jones (CERN)

Rhaglen Athrawon Cymru Welsh Teachers Programme Chwefror / February 8 2017

CERN & its Member States

CERN's Aims

- Research, Technology, Collaboration, Education
- Created in 1954 with the following aims
 - Scientific collaboration within Europe which has now become Worldwide
 - No military work and results available to all
- Personnel: staff ~2500 ; fellows ~550 ; students ~500 ; over 10,000 users

CERN & its Accelerators

CERN & its Accelerators

An Introduction to CERN – Welsh Teachers Programme 2017

What are we trying to achieve?

An Introduction to CERN – Welsh Teachers Programme 2017

What is matter made from?

An Introduction to CERN – Welsh Teachers Programme 2017

The Fundamental Forces

The Standard Model

We have a Model but for it to work we need the Higgs particle

The Higgs particle is "heavy" so to discover it we need a high energy

C

More Questions

BIG BANG

The same amount of matter & antimatter was created

>>>

Why?

Only matter (us) survives

NOW

What is this other 96%?

An Introduction to CERN – Welsh Teachers Programme 2017

LHC an accelerator to answer some of these questions?

2 beams made up of trillions of protons flying around a 27km ring at 0.999999991 times the speed of light in opposite directions

The CERN Accelerator Complex

An Introduction to CERN – Welsh Teachers Programme 2017

CÊRN

How does an accelerator work?

Circular Accelerators

X

Ŧ

Ð

A moving charged particle will follow a circular path in a magnetic field

The First Circular Accelerator

 This 5" version reached an energy of 80keV using only a 1800V acceleration potential

 As if hydrogen ions (protons) accelerated by 80,000V

Synchrotron Accelerators

+

Why use Superconducitivity?

Iron Yoke Magnets

- Good to reduce current required
- Iron guides the magnetic field
- BUT iron saturates at around 2T
 - For an accelerator with fixed magnetic field
 - Increasing the energy = increasing the size

Superconducting Magnets

- Virtually lossless (no resistance)!
 - Can carry very high currents to create high magnetic fields
 8T in LHC
 - BUT the wire needs to be cooled to near
 - absolute zero

An Introduction to CERN – Welsh Teachers Programme 2017

Why is the LHC Superconducting?

A standard household power cable will carry 13 Amps of electrical current

> 13 Amps at Room Temperature

Why is the LHC Superconducting?

To make a magnet strong enough for the LHC we needed 13'000 Amps of current

> 13'000 Amps at Room Temperature

13 Amps at Room Temperature

Why is the LHC Superconducting?

Making magnets from superconducting cable, operating at 2 Kelvin (-271 °C) was the only way for the LHC

13'000 Amps at -271 °C

13'000 Amps at Room Temperature

13 Amps at Room Temperature

An Introduction to CERN – Welsh Teachers Programme 2017

Last Magnet Lowered under Welsh Banner!

An Introduction to CERN – Welsh Teachers Programme 2017

CÊR

The LHC Accelerator Ready

Accelerating in the LHC

- In the same way that the wave pushes a surfer the electomagnetic wave gives energy to the particle
 - In a synchrotron the particle gains a small amount of energy each time it passes the accelerating structure
- In the LHC it takes ~30 minutes to go from injection energy to top energy (~20 million turns)

An Introduction to CERN – Welsh Teachers Programme 2017

Accelerating in the LHC

LHC has 2 modules made of 4 cavities per beam Providing $2 \times 4 \times 2 \text{ MV} = 16 \text{ MV}$ of accelerating gradient On each turn particles can gain 16 MeV of energy In one second particles can gain (16 MeV/turn) x (11245 turns/s) = 0.18 TeV/s

To go from 450GeV injection energy to 7 TeV

- Time taken is (7 0.45) / 0.18 = 36.4 s
- In reality the LHC it takes ~30 minutes to go from injection energy to top energy (~20 million turns) Driven by how fast the magnetic field can be ramped-up rather than how fast we can accelerate

Controlling the Beams

- Beam Instrumentation
- Over 500 position monitors per beam
 - Automatic feedback systems measure the beams & correct trajectories by adjusting magnetic field to keep them within 10 microns of desired position

An Introduction to CERN – Welsh Teachers Programme 2017

Controlling the Beams

Synchrotron light monitors

- The protons have such a high energy that they emit light when bent by the magnetic field, so called "synchrotron radiation"
- Looking at this light allows us to measure the size of the individual proton bunches in the LHC

CERN

Collisions in the LHC

An Introduction to CERN – Welsh Teachers Programme 2017

The LHC Experiments

- A total of 7 experiments use LHC collisions
 - Over 100 different countries working together

Each Experiment has own Specialised Detector

- 2 large general purpose experiments
 - ATLAS A Toroidal LHC ApparatuS
 - CMS Compact Muon Solenoid
- 2 large specialist experiments
 - ALICE concentrating on heavy ion physics
 - LHCb looking at B meson decays (matter / anti-matter asymmetry)
- 3 smaller experiments
 - TOTEM & LHCf studying the physics of scattered protons
 - MoEDAL searching for magnetic monopoles

The ATLAS Experiment

The CMS Experiment

An Introduction to CERN – Welsh Teachers Programme 2017

- In the same way as you study footprints in snow or mud
 - The shape, step size, direction, and depth of the footprints tells you which animal it was, how big it was and where it came from

How do the Detectors Work?

An Introduction to CERN – Welsh Teachers Programme 2017

From the Bottle to the Experiment

CERN

A Possible $H \rightarrow 2$ Photon Decay

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

4 A Possible H \rightarrow 4 Muon Decay

An Introduction to CERN – Welsh Teachers Programme 2017

How do we discover new particles?

• Look for a bump on a smoothly falling "background" distribution

The Results so Far (Run 1)

- Both ATLAS a CMS discover a new particle
 - The Higgs Boson Higgs is the heaviest particle to date
 - Nobel prize to F. Englert and P. Higgs in 2013

The Results so Far (Run 2)

2015 Excess of events over background observed at ~750 GeV

2016 Everything consistent with background

• Tantalising hints of a new particle turned out to be a statistical fluctuation

What next for the LHC?

- Studying the Higgs particle in detail
 - It will take time and much more data to verify that its properties are all that is expected of a standard model Higgs Boson
- Looking for new physics
 - Has another new particle already been discovered?
 - Constraining theoretical alternatives or extensions to the standard model
 - All this relies on much more data
- Upgrading to High Luminosity LHC
 - Foreseen for 2025
 - Aim to collect 10 times more data in the years 2025-2035 than with all runs up to 2023
 - Is there anything else to discover?

2012 CES

Antimatter Studies

- At the other end of the energy scale
 - The anti-proton decelerator (AD) & Extra Low ENergy (ELENA)

Trapping Anti-Hydrogen

- Does anti-matter behave the same way as matter?
 - Same energy levels (spectroscopy)? ALPHA, ATRAP, ASACUSA
 - Same under influence of gravity? AEgIS, GBAR, ALPHA-g
 - Magnetic moment? BASE

CERN and the Wider Community

World Wide Web

Medical Applications

- Accelerating particle beams
 - ~30'000 accelerators worldwide
 - $\sim 17'000$ used for medicine
- Hadron Therapy

- >70'000 patients treated worldwide (30 facilities)
- >21'000 patients treated in Europe (9 facilities)
- Leadership in Ion Beam Therapy now in Europe & Japan

An Introduction to CERN – Welsh Teachers Programme 2017

Medical Applications

• Detecting Particles – PET Scanners

Normal Brain

Alzheimer's Disease

An Introduction to CERN – Welsh Teachers Programme 2017

Security

Scanning lorries without offloading them!

An Introduction to CERN – Welsh Teachers Programme 2017

The Computing "Grid"

- Processing large quantities of data at high speed
 - Medine / Health
 - Nanotechnology
 - Engineering
 - The Environment

Analysing satellite data after a natural disaster (Floods in Pakistan)

CERN – a fundamental science facility

- Largest scientific collaborations in the world
- Pushing boundaries of engineering & technology
- Many practical "spin-offs" for everyday applications

CERN depends on you to

- provide the next generation of physicists and engineers
- keep up tradition of Welsh contributions to this endeavour

Mwynhewch!