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Paramagnet ic squeezing of QCD mat t er

G. S. Bali,1, 2 F. Bruckmann,1 G. Endrődi,1, * and A. Schäfer1
1 Insti tute for Theoretical Physics, Universität Regensburg, D-93040 Regensburg, Germany

2Department of Theoretical Physics, Tata Insti tute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.

We determine the magnet izat ion of Quantum Chromodynamics (QCD) for several temperatures
around and above the t ransit ion between the hadronic and the quark-gluon phases of st rongly
interact ing mat ter. We obtain a paramagnet ic response that increases in st rength with the tem-
perature. We argue that due to this paramagnet ism, chunks of quark-gluon plasma produced in
non-cent ral heavy ion collisions should become elongated along the direct ion of the magnet ic eld.
This anisot ropy will then cont ribute to the ellipt ic ow 푣2 observed in such collisions, in addit ion to
the pressure gradient that is usually taken into account . We present a simple est imate for the mag-
nitude of this new e ect and a rough comparison to the e ect due to the init ial collision geomet ry.
We conclude that the paramagnet ic e ect might have a signi cant impact on the value of 푣2.

1. I N T RODUCT ION

In heavy-ion collisions (HICs) st rongly interact ing
mat ter is exposed to ext reme condit ions to probe the
QCD phase diagram and to reveal propert ies of the
quark-gluon plasma (QGP). It is however not st raight -
forward to relate characterist ics of the so produced QCD
medium to experimental signatures. One of the most
prominent experimental observables is the ellipt ic flow
푣2 [1], which marks the onset of hydrodynamic behavior
at very early t imes (hydroizat ion). Connect ing 푣2 to the
centrality of HICs in a model-independent way is crucial
to ext ract the rat io of viscosity to ent ropy density 휂/푠of
the QGP [2].
Another important aspect of the init ial phase of HICs

is the generat ion of ext remely st rong magnet ic fields [3–
6]. We show that these magnet ic fields may have an
impact on푣2 and, therefore, should be taken into account
in a quant itat ive analysis of the ellipt ic flow. Irrespect ive
of this observable effect , the response to magnet ic fields
is a fundamental property of QCD matter which deserves
to be studied in its own right . Other applicat ions of our
findings include models of neutron stars (magnetars [7])
and primordial magnet ic fields in the early universe (see,
e.g., Ref. [8]).
All informat ion about the response of QCD to mag-

net ic fields can be deduced from the free energy density
푓= −푇/푉 · log풵, given in terms of the part it ion func-
t ion 풵. Applying a constant external magnet ic field 퐵
induces a nonzero magnet izat ion

푀 = − 휕푓
휕(푒퐵) , (1)

which we normalized by the elementary charge (푒> 0).
The sign of 푀 determines whether the QCD vacuum as
a medium exhibits a paramagnet ic response (푀 > 0)
or a diamagnet ic one (푀 < 0) [9]. In the former case
themagnet izat ion is aligned parallel to theexternal field,

* Corresponding author, email: gergely.endrodi@physik.uni-r.de

FIG. 1: Typical magnet ic eld pro le in the t ransverse plane
of a non-cent ral heavy-ion collision (darker colors represent
st ronger elds). The paramagnet ic squeezing exerts the force
indicated by the red arrows. Asa result , theQGP iselongated
in the푦-direct ion.

while in the lat ter case it is ant iparallel. One clue about
the sign of 푀 came from a low-energy effect ive model
of QCD — the hadron resonance gas (HRG) model —
which predicted the magnet izat ion to be posit ive and
thus the QCD vacuum to be a paramagnet [10]. Sev-
eral methods were since developed to study the problem
on the lat t ice [11–14]. All of the results agree qualita-
t ively, confirming the finding of the HRG model that the
QCD vacuum is paramagnet ic.
In the present let ter we extend the lat t ice measure-

ments of Ref. [11] to cover several temperatures in and
above the t ransit ion region. We do not yet provide fi-
nal, cont inuum extrapolated values for the magnet iza-
t ion, but instead aim at a first est imate of the effect of
QCD paramagnet ism on thephenomenology of heavy ion
collisions. To thisend, let usconsider a chunk of theQGP
exposed to a non-uniform magnet ic field. Owing to the
posit ivity of 푀 , the free energy is minimized when the
medium is located in regions where 퐵 is maximal. The
minimizat ion of 푓thus results in a net force, which st rives
to change the shape of the medium. For a non-central
HIC (with 푧̂being the direct ion of the collision axis, 푥̂-푧̂
the react ion plane and 푦̂ the direct ion of the magnet ic
field induced by the beams), this force will elongate the
dist ribut ion of QCD matter along the 푦-direct ion, see
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More recently, this very same strategy was adopted in
the case of hot magnetized quark matter. In particular,
in ref. [58], the IMC phenomenon found by lattice simu-
lations was explained within the two-flavor Nambu–Jona-
Lasinio model (NJL) when the coupling constant, G, is
forced to decrease with both the magnetic field strength
B and the temperature T , simulating effects not captured
with the conventional NJL model. A similar procedure was
used with a SU(3) Polyakov-NJL (PNJL) model, but with
G depending only on the magnetic field [59]; this leads,
however, to a non-monotonic decrease of Tpc at high field
values. In a very recent work [60], an explicit calculation
of the one-loop correction to the quark-gluon vertex has
shown that competing effects between quark and gluon
color charges make the effective quark-gluon coupling to
decrease as the strength of the magnetic field increases at
finite temperatures. This certainly lends strong support
to the idea [58] that the IMC is due to the decrease of
the effective coupling between quarks and gluons in the
presence of magnetic fields at high temperatures.

In the present paper we investigate the implications
of using a B- and T -modified NJL coupling for thermo-
dynamic quantities of magnetized quark matter. We are
particularly interested in the qualitative changes that a
G(B, T ) causes in quantities very sensitive to the chiral
transition, such as the speed of sound, thermal suscepti-
bility and specific heat. This is an important open question
since the interaction that is implied by a G(B, T ) gives rise
to a new phenomenology that has not been fully explored
in the literature. The investigation of the correlation be-
tween a T and B dependence of the NJL coupling G used
to describe IMC with other physical quantities is impor-
tant to get further insight into the role played by effects
not captured by the normal NJL. As we shall show, the
very same G(B, T ) required to fit the lattice result for Tpc,
gives results for the pressure, entropy and energy density
that are in qualitative agreement with corresponding lat-
tice results, while a B- and T -independent coupling gives
qualitatively different results for those quantities. This
seems to be a clear indication that the B and T depen-
dence in G needed to describe Tpc is neither fortuitous nor
valid for a single physical quantity only; it seems to cap-
ture correctly the physics left out in the conventional NJL
model. Instead of the parametrization used in ref. [58],
based on qualitative arguments referring to asymptotic
freedom, in the present paper we base the parametrization
of G on a precise fit of recent LQCD calculations. In doing
so, one avoids any particular interpretation on the effects
behind fitting formulas used for the B and T dependence
of G, as any interpolation formula of the lattice data points
leads to qualitatively similar results for the thermodynam-
ical quantities. We fit LQCD results for the magnetized
quark condensates with a particularly simple Fermi-type
distribution formula for G(B, T ), parametrized by four B-
dependent coefficients. As we shall demonstrate, one of the
main physical implications of using such thermo-magnetic
effects in the coupling constant is that the signatures asso-
ciated with the chiral transition in thermodynamic quan-
tities become more markedly defined as the field strength
increases. Also, our results for the pressure and magneti-

zation are in line with LQCD predictions, which find that
at a fixed temperature, these quantities always increase
with B. This behavior, especially close to the transition
region, is not observed with the NJL model with a B- and
T -independent coupling G.

In the next section we review the results for the mag-
netized NJL pressure within the mean field approximation
(MFA). In sect. 2 we extract G(B, T ) from an accurate fit
of LQCD results. Numerical results for different thermo-
dynamical quantities are presented in sect. 3. Our conclu-
sions and final remarks are presented in sect. 4.

1 Magnetized NJL pressure

Here we consider the isospin-symmetric two-flavor version
of the NJL model [61], defined by the Lagrangian density

LNJL = −1
4
FµνFµν + ψ̄

(
/D − m

)
ψ

+G
[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
, (1)

where the field ψ represents a flavor iso-doublet of u and d
quark flavors and Nc-plet of quark fields, τ are the isospin
Pauli matrices, Dµ = (i∂µ − QAµ) the covariant deriva-
tive, Q = diag(qu = 2e/3, qd = −e/3) the charge matrix
and Aµ, Fµν = ∂µAν − ∂νAµ are, respectively, the elec-
tromagnetic gauge and tensor fields1. Since the model is
non-renormalizable, we need to specify a regularization
scheme. In this work we use a non-covariant cutoff regu-
larization parametrized by Λ, within the magnetic-field–
independent regularization scheme (MFIR). The MFIR
scheme, originally formulated in terms of the proper-time
regularization method [62], was recently reformulated [63]
using dimensional regularization by performing a sum over
all Landau levels in the vacuum term. In this way, one
is able to isolate the divergencies into a term that has
the form of the zero magnetic field vacuum energy and
thereby can be renormalized in a standard fashion. The
MFIR was recently employed in the problems of magne-
tized color superconducting cold matter [64,65], where its
advantages, such as the avoidance of unphysical oscilla-
tions, are fully discussed. Other interesting application of
the MFIR scheme can be found in [66,67], where the prop-
erties of magnetized neutral mesons were studied. Within
this regularization scheme, the cutoff Λ, the coupling G
and the current quark mass m represent free parameters
which are fixed [68,69] by fitting the vacuum values of the
pion mass mπ, pion decay constant fπ and quark conden-
sate ⟨ψ̄fψf ⟩.

In the MFA, the NJL pressure2 in the presence of a
magnetic field can be expressed as a sum of quasi-particle

1 In this work we adopt Gaussian natural units where
1 GeV2 ≃ 5.13 × 1019 G and e = 1/

√
137.

2 Note that in this work we are concerned only with the
longitudinal components of the pressure, sound velocity, etc.
For simplicity they will be denoted as pressure, sound velocity,
etc.
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running coupling constant of the chiral invariant quar-
tic quark interaction in NJL and PNJL models with the
magnetic field. The damping of the strength of the effec-
tive quartic interaction is built phenomenologically, keep-
ing SU(3) flavor symmetry, under different assumptions
inspired by lattice results for the quark condensate at
finite temperature and magnetic field.

This paper is organized as follows. In Sec. II, we briefly
present the PNJL model used in this work, the Polyakov
loop potential, and the parametrizations chosen. In Sec.
III, the importance of the running coupling in the (P)NJL
models for magnetized quark matter is discussed. Also,
the behavior of the condensates with temperature and
the magnetic field intensity is compared with the LQCD
results. Finally, in Sec. IV, the main conclusions are
drawn.

II. MODEL AND FORMALISM

The PNJL Lagrangian with explicit chiral symmetry
breaking, where the quarks couple to a (spatially con-
stant) temporal background gauge field, represented in
terms of the Polyakov loop, and in the presence of an
external magnetic field is given by [18]

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet

+ U
(

Φ, Φ̄; T
)

−
1

4
FµνF µν , (1)

where the quark sector is described by the SU(3) version
of the NJL model which includes scalar-pseudoscalar and
the ’t Hooft six fermion interactions that models the axial
UA(1) symmetry breaking [19], with Lsym and Ldet given
by [20],

Lsym =
Gs

2

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λaq)2
]

, (2)

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]} (3)

where q = (u, d, s)T represents a quark field with three
flavors, m̂c = diagf (mu, md, ms) is the corresponding

(current) mass matrix, λ0 =
√

2/3I where I is the unit
matrix in the three-flavor space, and 0 < λa ≤ 8 de-
note the Gell-Mann matrices. The coupling between the
(electro)magnetic field B and quarks, and between the
effective gluon field and quarks is implemented via the
covariant derivative Dµ = ∂µ − iqf Aµ

EM − iAµ where
qf represents the quark electric charge (qd = qs =
−qu/2 = −e/3), AEM

µ and Fµν = ∂µAEM
ν − ∂νAEM

µ

are used to account for the external magnetic field and
Aµ(x) = gstrongAµ

a(x)λa

2 where Aµ
a is the SUc(3) gauge

field. We consider a static and constant magnetic field
in the z direction, AEM

µ = δµ2x1B. In the Polyakov
gauge and at finite temperature the spatial compo-
nents of the gluon field are neglected: Aµ = δµ

0 A0 =
−iδµ

4 A4. The trace of the Polyakov line defined by

Φ = 1
Nc

⟨⟨P exp i
∫ β

0
dτ A4 (x⃗, τ) ⟩⟩

β
is the Polyakov loop

which is the order parameter of the Z3 symmetric/broken
phase transition in pure gauge.

To describe the pure-gauge sector an effective potential
U

(

Φ, Φ̄; T
)

is chosen in order to reproduce the results
obtained in lattice calculations [21],

U
(

Φ, Φ̄; T
)

T 4
= −

a (T )

2
Φ̄Φ

+ b(T )ln
[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

, (4)

where a (T ) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2
, b(T ) = b3

(

T0

T

)3
.

The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
GsΛ2 = 3.67 and KΛ5 = 12.36 as in [23]. The thermo-
dynamical potential for the three-flavor quark sector Ω
is written as

Ω(T, µ) = Gs

∑

f=u,d,s

⟨q̄f qf ⟩2 + 4K ⟨q̄uqu⟩ ⟨q̄dqd⟩ ⟨q̄sqs⟩

+U(Φ, Φ̄, T ) +
∑

f=u,d,s

(

Ωf
vac + Ωf

med + Ωf
mag

)

(5)

where the flavor contributions from vacuum Ωvac
f ,

medium Ωmed
f , and magnetic field Ωmag

f [24] are given
by

Ωf
vac = −6

∫

Λ

d3p

(2π)3

√

p2 + M2
f (6)

Ωf
med = −T

|qf B|

2π

∑

k=0

αk

∫ +∞

−∞

dpz

2π

(

Z+
Φ (Ef ) + Z−

Φ (Ef )
)

(7)

Ωf
mag = −

3(|qf |B)2

2π2

[

ζ
′

(−1, xf ) −
1

2
(x2

f − xf ) ln xf +
x2

f

4

]

(8)

where Ef =
√

p2
z + M2

f + 2|qf |Bk , α0 = 1 and

αk>0 = 2, xf = M2
f /(2|qf |B), and ζ

′

(−1, xf) =
dζ(z, xf )/dz|z=−1, where ζ(z, xf ) is the Riemann-
Hurwitz zeta function. At zero chemical potential the
quark distribution functions Z+

Φ (Ef ) and Z−
Φ (Ef ) read

Z+
Φ = Z−

Φ = ln
{

1 + 3Φe−βEf + 3Φe−2βEf + e−3βEf
}

(9)

once Φ̄ = Φ.
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We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
GsΛ2 = 3.67 and KΛ5 = 12.36 as in [23]. The thermo-
dynamical potential for the three-flavor quark sector Ω
is written as
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This paper is organized as follows. In Sec. II, we briefly
present the PNJL model used in this work, the Polyakov
loop potential, and the parametrizations chosen. In Sec.
III, the importance of the running coupling in the (P)NJL
models for magnetized quark matter is discussed. Also,
the behavior of the condensates with temperature and
the magnetic field intensity is compared with the LQCD
results. Finally, in Sec. IV, the main conclusions are
drawn.

II. MODEL AND FORMALISM

The PNJL Lagrangian with explicit chiral symmetry
breaking, where the quarks couple to a (spatially con-
stant) temporal background gauge field, represented in
terms of the Polyakov loop, and in the presence of an
external magnetic field is given by [18]

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet
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−
1
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where the quark sector is described by the SU(3) version
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UA(1) symmetry breaking [19], with Lsym and Ldet given
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2/3I where I is the unit
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in the z direction, AEM
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The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
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mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
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potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
GsΛ2 = 3.67 and KΛ5 = 12.36 as in [23]. The thermo-
dynamical potential for the three-flavor quark sector Ω
is written as
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2/3I where I is the unit
matrix in the three-flavor space, and 0 < λa ≤ 8 de-
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EM − iAµ where
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which is the order parameter of the Z3 symmetric/broken
phase transition in pure gauge.
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b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
mπ , mK and mη′ to their empirical values. We consider
Λ = 602.3, MeV, mu = md = 5.5, MeV, ms = 140.7 MeV,
GsΛ2 = 3.67 and KΛ5 = 12.36 as in [23]. The thermo-
dynamical potential for the three-flavor quark sector Ω
is written as
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The standard choice of the parameters for the effective
potential U is a0 = 3.51, a1 = −2.47, a2 = 15.2, and
b3 = −1.75. The value of T0 = 210 MeV is fixed in order
to reproduce LQCD results (∼ 170 MeV [22]),

We use as a regularization scheme, a sharp cutoff, Λ,
in three-momentum space, only for the divergent ultra-
violet sea quark integrals. The parameters of the model,
Λ, the coupling constants Gs and K, and the current
quark masses mu and ms are determined by fitting fπ,
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Figure 2. Condensate average and di↵erence as functions of temperature for di↵erent values of the magnetic field for G (left)
and G(B, T ) (right). Data from Ref. [11].

Figures 1 and 2 display the results for combinations
of the quark condensates: the u and d condensates, their
sum and di↵erence. In the left panels of the figures, the
condensates are evaluated with a T� and B�independent
coupling G that fits the lattice results for the average
(⌃u+⌃d)/2 in vacuum, G = 4.50373 GeV�2; in the right
panels, the condensates are calculated with the coupling
G(B, T ) of Eq. (21), with the fitting parameters given in
Table 1.

The figures clearly show that the NJL model is able to
capture the sharp decrease around the crossover tempera-
ture of the lattice results for the average and di↵erence of
the condensates only when the coupling G(B, T ) is used;
when using the T� and B�independent coupling G, a
rather smooth behavior for these quantities is obtained.
We have not attempted to obtain a G(B, T ) that gives
a best fit for both (⌃u + ⌃d)/2 and ⌃u � ⌃d, but one
sees that the model nevertheless gives a very reasonable
description of the latter. Although here we are not partic-

ularly concerned with the results at T = 0, for the sake
of completeness we mention that an extrapolation of the
fit to T = B = 0 gives G(0, 0) = 4.6311 GeV�2. Such a

coupling leads to h ̄f f i1/300 = �236.374 MeV, which dif-
fers only by a few percent from the value calculated with
G. This small discrepancy is due to the fact that we have
attempted to obtain a good fit with a limited number of
parameters of the lattice data at high temperatures only,
where more data are available.

3 Thermodynamical quantities

In the present section we examine the predictions of the
NJL model for the thermodynamical quantities of mag-
netized quark matter when the fitted coupling G(B, T ) is
used. We start by considering the quantities that charac-
terize the equation of state (EoS), such as the normalized
pressure PN = P (T,B) � P (0, B), the entropy density s,

G G(eB,T)

Eur. Phys. J. A 53 (2017) 101
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Figure 5. The thermal susceptibility and specific heat as functions of temperature for di↵erent values of the magnetic field
obtained with G (left) and G(B, T ) (right).

ferent thermodynamical quantities and analysed the qual-
itative changes implied by the fitted coupling. The main
conclusion of our work is that a coupling G(B, T ) that
fits lattice result for Tpc as determined by the quark con-
densates, gives results for the pressure, entropy and en-
ergy densities that are in qualitative agreement with cor-
responding lattice results, while a B� and T�independ-
ent coupling gives qualitatively di↵erent results for those
quantities. In particular, for any fixed temperature, quan-
tities such as pressure and magnetization obtained with
G(eB, T ) increase with eB, a result that is consistent with
lattice QCD results.

Here, we have shown a very important result: NJL
model calculations performed with our thermo-magnetic
coupling predicts that the magnetization is positive in all
temperature range, which complies to the paramagnetic
nature of QCD medium and is in agreement with lattice
calculations. Another feature that supports the thermo-
magnetic dependence of the coupling constant is the obser-

vation that the chiral transition seems sharper and peaks
observed in quantities such as the entropy density increase
considerably with eB, a feature that is also consistent with
lattice simulations and often missed when using a B� and
T�independent coupling. As remarked earlier, the results
seem to indicate that the B and T dependence in G that
gives the correct Tpc is neither fortuitous nor valid for a
single physical quantity only; it seems to capture correctly
the physics left out in the conventional NJL model. Also,
any interpolation formula of the lattice data points for the
quark condensate is expected to give qualitatively similar
results for the thermodynamical quantities in the appro-
priate range of T and B.

Our results indicate that it is crucial to take into ac-
count both B and T e↵ects in the e↵ective coupling. First,
it is virtually impossible to fit lattice results with an ef-
fective NJL coupling that depends on B; a coupling that
depends on B, despite decreasing with B, leads [56] to
non monotonic decrease of Tpc at eB ⇡ 1.1GeV2. It is

G G(eB,T)

SU(2)
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Figure 7. The pseudocritical temperature for the chiral transition of magnetized quark matter as a function of the magnetic
field strength obtained with G (top) and with G(B, T ) (bottom).
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Figure 9. The normalized magnetization M/e (left) and the normalized pressure (right) as a function of the magnetic field at
T = 70 MeV, obtained with G (solid line) and G(B, T ) (dotted line).
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Figure 10. Our final result: the QCD phase diagram in the magnetic field-temperature plane.
The colored bands represent the pseudocritical temperature as defined from inflection points of
the renormalized chiral condensate ūur + d̄dr (red) and the strange quark number susceptibility cs2
(blue) in the continuum limit. Also indicated by the dashed vertical lines are the maximal magnetic
fields produced at RHIC and at the LHC. The large B region of the phase diagram is relevant for
the evolution of the early universe.
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A Lattice vector potential and periodic boundary conditions

In this appendix we show that the lattice prescription for the U(1) links, as in equation (2.3),

is indeed equivalent to the continuum vector potential up to a local U(1) gauge transfor-

mation. The direct lattice discretized version of the continuum vector potential (2.1) can

be written as

uν(n) = 1, (ν ̸= y),

uy(n) = eia
2qBnx .

(A.1)

The periodic boundary conditions are now only satisfied up to a local U(1) gauge transfor-

mation (transition function),

uy(Nx, ny, nz, nt) = uy(0, ny, nz, nt) · V,

V = eia
2qBNx ,

(A.2)
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Figure 7. The pseudocritical temperature for the chiral transition of magnetized quark matter as a function of the magnetic
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Figure 7. The pseudocritical temperature for the chiral transition of magnetized quark matter as a function of the magnetic
field strength obtained with G (top) and with G(B, T ) (bottom).
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Fig. 1. Condensates average and difference as functions of eB for the NJL model with 
GII , G(eB) compared to lattice QCD calculations from Ref. [29].

Fig. 2. Normalized constituent quark mass as a function of eB for the NJL model 
with different coupling schemes.

In Fig. 1 we show our numerical results for the average (!u +
!d)/2 (upper panel) and the difference (!u − !d) (lower panel) 
using the coupling constant GII and the fitted coupling G(eB) of 
eq. (22) in accord with the recent LQCD data [29]. The top panel 
displays how the order parameter for the chiral transition rep-
resented by the scalar condensates increases with B in a clear 
manifestation of the magnetic catalysis phenomenon. Fig. 2 shows 
the magnetized effective quark mass behavior changes drastically 
when one uses the running coupling. However, such a behavior 
could be anticipated by recalling that the initial motivation to 
adopt such coupling was to counterbalance the increase of the or-
der parameter with B so that the (non observable) effective quark 

Fig. 3. Normalized meson masses as functions of eB in the NJL model with different 
coupling schemes. We also include the mπ0 (B) results of [18].

mass M ∼ G⟨ψ f ψ f ⟩ behaves differently from the case where G is 
fixed. This was particularly important at finite temperatures since 
in general the (pseudo)temperature is proportional to the value of 
the effective mass value at zero temperature (see, e.g., Ref. [30]) 
and therefore IMC could be achieved by using G(eB, T ) in the eval-
uation of M .

In the upper panel of Fig. 3 we compare our results of the nor-
malized neutral pion mass in the MFIR scheme for different cou-
pling constants G I , GII and G(eB) for eB up to 1.0 GeV2. Although 
the curves qualitatively agree at very weak fields, the behavior of 
the neutral pion mass with G I and GII are opposite to the G(eB)
case at fields higher than ≈ 0.4 GeV2, when the decrease of the π0
mass is stronger in the G(eB) case when compared to the G I and 
GII cases which have a slight increase. We also compare our pre-
dictions for mπ 0(B) with those presented in Ref. [18]. We predict 
values which are about 10% lower than those predicted in Ref. [18]
when the eB ! 0.6 GeV2 while beyond this value our results indi-
cate that mπ 0(B) decreases in less dramatic way.

The lower panel of Fig. 3 shows the scalar meson mass where 
again the differences can be traced back to the fact that mσ ∼ M as 
the figure again reveals. The results obtained with G(eB) indicate 
that, just like M , the sigma meson mass is quite stable (varying 
less than 10% at intermediate field values) so that the correlation 
length, ξ ∼ 1/mσ also remains almost constant. On the other hand 
the results obtained by using a fixed G lead to the conclusion that 
the scalar mass increases so that this mode decouples while ξ → 0.

In the upper panel of Fig. 4, our results for the neutral pion de-
cay constant are shown. The same three sets of coupling constants 
of Fig. 3 have been considered. A systematic increase of fπ0 as 
a function of eB occurs for all three parameterizations and qual-
itatively both G I and GII constant coupling cases show a similar 

S.S. Avancini et al. / Physics Letters B 767 (2017) 247–252 251

Fig. 4. Normalized π0 decay constant and meson-quark coupling in the NJL model 
with different coupling schemes. For the π0 decay constant, we also show the com-
paration between the RPA calculation using the complete polarization integral as 
well as the approximation.

behavior, although a less dramatic increase takes place at fields 
greater than 0.5 GeV2. Our prediction for fπ0 , mπ0 and the quark 
condensates are compatible with the GOR relation. Notice that 
the validity of the approximation Iq,n(0) ≈ Iq,n(mπ0

2) is confirmed 
since one can hardly see the difference between the calculations 
using Iq,n(mπ0) or Iq,n(mπ0 = 0).

We have also checked the results for the neutral pion-quark 
coupling in the lower panel of Fig. 4, predicting a initial decrease 
of its values up to 0.25 GeV2, and then a steadily increase with 
higher fields for both G I and GII cases, while for G(eB) case we 
obtain a prediction of a continuous decrease which again could be 
anticipated by recalling that gπ0qq ∼ M/ fπ0 and that fπ0 increases 
with B . Note also that the curve has the same shape as the one 
showed in Fig. 2 for M . Finally, in Fig. 5 we show once again our 
results for the neutral pion mass but now, having in mind a quan-
titative comparison with lattice QCD results, we use the parameter 
set IV of Table 1. In this parametrization the current quark mass is 
set equal to 50.16 MeV in order to obtain for B = 0 the π0 mass 
of 417 MeV, which is the value used in the lattice calculation [26,
27]. Thus, we can compare the results using different coupling con-
stants with the recent lattice results showing that the behavior of 
the masses as a function of eB is qualitatively the same as found 
in the top panel of Fig. 3. That is, in accordance with LQCD pre-
dictions, our results indicate that the neutral pion remains a soft 
mode over a rather wide range of B values. Note that Fig. 5 indi-
cates that only when G(eB) is used in conjunction with a heavy 
current quark mass a very good quantitative agreement with re-
cent LQCD results within the Wilson Fermions Formulation [26,27]
is obtained. In those investigations, the authors discuss how the 

Fig. 5. Normalized neutral pion mass mπ0 (eB)/mπ0 (0) in the NJL model with dif-
ferent coupling schemes and a large current quark mass compared to recent lattice 
results [26,27].

LQCD results for the pion mass in external magnetic fields depend 
on the critical hopping parameters, in particular, they show that 
the impact of their results within the Wilson Fermions Formula-
tion has been ignored in previous works. The use of constant bare 
quark masses in the LQCD calculations implies that the neutral 
pion mass consistently decreases when eB grows. The agreement 
between our calculations and the LQCD results is also a good ev-
idence that more sophisticated results can be achieved when one 
assumes that the NJL SU(2) coupling constant has a dependence 
on eB as proposed in Refs. [24,25].

4. Conclusions

The properties of magnetized neutral mesons have been in-
vestigated using a fixed and a B-dependent coupling constant so 
that model predictions and LQCD results related to inverse mag-
netic catalysis agree. The evaluations have been performed using 
the two flavor NJL model following the RPA-MFIR framework pre-
sented in Ref. [1]. One of our main results shows that the π0 re-
mains a soft mode even at rather high field strengths (≈ 1.5 GeV2) 
since its mass decreases by about 30%. The quantitative agreement 
between our results and recent LQCD predictions is remarkable. 
Another physically interesting result refers to the behavior of the 
scalar meson mass which is predicted to steadily increase when a 
fixed coupling is used reaching (at eB ≈ 1.0 GeV2) a value which 
is two and half times higher than its value at B = 0, also indicat-
ing a decrease of the correlation length, while our results predict 
that mσ remains quite stable. The different predictions can be eas-
ily understood by recalling mσ ∝ M ∝ G⟨ψ f ψ f ⟩ and that, owing 
to the MC effect, the order parameter ⟨ψ f ψ f ⟩ increases within 
both approaches. On the other hand, the effective quark mass natu-
rally increases when one uses a constant G I (and GII) and remains 
practically stable when G(eB) is considered yielding the observed 
different type of behavior.

Although the quark mass does not necessarily represent a phys-
ical observable this is still an interesting result since the behavior 
of M gets directly reflected in mσ ∝ 1/ξ . When the different model 
prescriptions are used to evaluate the π0 decay the one which em-
ploys G(eB) predicts an increase which is sharper than the one 
predicted by using a constant coupling value and, together with 
our predictions for mπ0 and quark condensates, observes the GOR 
relation. Finally, when comparing model predictions for the me-
son coupling constant gπ0qq we found that the use of G(eB) and 
G I (and GII) indicate an opposite behavior since the former pre-
dicts this quantity to decrease with B while the latter predicts it 
to increase. Once again the differences are easily understood from 

G G(eB)
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FIG. 11. Equation of state of β-equilibrium quark matter for a
density-dependent magnetic field within NJL su(2) and NJL su(3).
The EOS for B = 0 is also shown.

of the central energy/baryonic density for the stronger fields
considered.

Another important effect of the field on the properties of
the stars is the increase of the radius of the star with the largest
radius, which may be as high as 9.5 km for the su(3) NJL. In
general, the maximum mass star configurations for the su(2)
version of the NJL model are smaller with smaller radius,
∼7 km, in average 2 km smaller than the corresponding stars
in the su(3) version of the NJL model.

Within the su(3) NJL the maximum mass configurations
are always above 1.45M⊙ and may be as high as 1.86M⊙
for a central magnetic field of 5 × 1018 G. These numbers
are within the masses of observed neutron stars. However, the
su(2) version of the NJL model foresees too small star masses
except for very large magnetic fields.

The effects of the anomalous magnetic moments has been
shown to be relevant [23–25] and we intend to take them into
account in the next calculations.

The color superconductivity (CS) [26], which allows the
quarks near the Fermi surface to form Cooper pairs that
condense and break the color gauge symmetry [27], is known
to be present in the QCD phase diagram at sufficiently high
densities. The effect of strong magnetic fields on the CS
properties of quark matter, which can be drastic for sufficiently
high fields, has already been studied by several authors [28]. It
would be important to investigate how this CS phase could
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TABLE I. Maximum mass configurations for NJL su(3) and
su(2), and several magnetic field intensities: the gravitational mass
(M), baryonic mass (Mb), radius (R), central energy density (ϵc),
baryonic density (ρc), and magnetic field (Bc) are given

B0 M Mb R ϵc ρc Bc

(G) (M⊙) (M⊙) (km) fm−4 fm−3 (G)

su(3)
0 1.46 1.53 8.93 7.49 1.19 1015

1018 1.46 1.53 8.93 7.49 1.19 1.6 × 1017

5 × 1018 1.47 1.54 8.88 7.94 1.24 8.8 × 1017

1 × 1019 1.50 1.58 8.78 8.36 1.25 1.8 × 1018

2 × 1019 1.61 1.69 8.53 9.64 1.25 3.6 × 1018

5 × 1019 1.86 1.88 8.81 9.26 1.01 5.0 × 1018

su(2)
0 1.29 1.24 7.09 13.68 1.86 1015

1 × 1018 1.29 1.25 7.08 13.85 1.88 1.2 × 1017

1 × 1019 1.38 1.33 7.01 14.52 1.72 4.0 × 1018

2 × 1019 1.49 1.41 7.11 14.47 1.49 5.7 × 1018

affect the properties of quark stars under strong magnetic
fields. However, it could be that CS is only affected by
magnetic fields stronger than the ones considered in the present
article, which, however, predicts already a very high maximum
mass, M ∼ 1.9M⊙. The largest magnetic field we got in the
center of a quark star is 5 × 1018 G, while in Ref. [28] it is
shown that a noticeable effect requires fields above ∼1019 G.
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APPENDIX: THE su(3) NJL MODEL IN THE MFA

In this appendix the main steps to obtain the NJL La-
grangian in the mean-field approximation are explicitly shown.
First, we consider the Lsym term given in Eq. (3). For later
convenience, we define the matrix elements of $ and its adjoint
$† as [9]

$ij = ψ̄j (1 − γ5)ψi ,$
†
ij = ψ̄j (1 + γ5)ψi ,

where i and j are flavor labels. From these definitions, one can
easily show that

ψ̄f (1 − γ5)λaψf = tr(λa$),
(A1)

ψ̄f (1 + γ5)λaψf = tr(λa$
†),

where tr is the trace operator in flavor space. So, adding
and subtracting these expressions, we can rewrite the NJL
symmetric four-point interaction term as

Lsym = G

8∑

a=0

[(ψ̄f λaψf )2 + (ψ̄f iγ5λaψf )2]

= G

8∑

a=0

tr(λa$)tr(λa$
†) = 2Gtr($$†). (A2)
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of the central energy/baryonic density for the stronger fields
considered.
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fields. However, it could be that CS is only affected by
magnetic fields stronger than the ones considered in the present
article, which, however, predicts already a very high maximum
mass, M ∼ 1.9M⊙. The largest magnetic field we got in the
center of a quark star is 5 × 1018 G, while in Ref. [28] it is
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Final remarks

 NJL models with fixed coupling fails to describe LQCD simulations 


 Thermo-magnetic coupling seems adequate to improve NJL models


 Sign of magnetization also fixed by thermo-magnetic coupling


 Pion mass at T = 0 matches LQCD calculations with G(eB)


 Negative pressure for thermo-magnetic coupling in SU(3) case



Outlook

 Verify mass x radius relation with G(eB,T) & K(eB,T) 


 Check what is contributing to the negative pressure


 Compute the magnetization in SU(3) with G(eB,T) & K(eB,T)


