

Collaborators

S. Avancini M. Benghi R. Farias

G. Krein W. Tavares

Acknowledgements

Outline

- * Introduction / Motivation
- * Thermo-magnetic NJL coupling SU(2) prototype
- * Thermo-magnetic PNJL couplings SU(3) strangeness
- * Thermodynamics and EOS
- * Compact stars

Introduction / Motivation

LHC / RHIC

"This anisotropy will then contribute to the elliptic flow observed in such collisions"

Phys. Rev. Lett. 112 (2014) 042301

Magnetars

neutron stars

hadronic matter

Related works

Eduardo Fraga, Letícia Palhares	RJ
---------------------------------	----

Jorge Noronha, Bruno Mintz RJ

RS

SP

PT

Ricardo Farias, Gastão Krein

Débora Menezes, Sidney Avancini, Marcus Benghi SC

Odilon Lourenço, Tobias Frederico

Constância Providência

Norberto Scoccola

Models

Klevansky, Weise, Buballa, Ratti, ...

SU(2)

$$\mathcal{L}_{\text{NJL}} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} \left(\not D - m \right) \psi + G \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \tau \psi \right)^2 \right]$$

SU(3)

$$\mathcal{L} = \bar{q} \left[i \gamma_{\mu} D^{\mu} - \hat{m}_{c} \right] q + \mathcal{L}_{sym} + \mathcal{L}_{det} + \mathcal{U} \left(\Phi, \bar{\Phi}; T \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\mathcal{L}_{sym} = \frac{G_s}{2} \sum_{a=0}^{8} \left[(\bar{q}\lambda_a q)^2 + (\bar{q}i\gamma_5\lambda_a q)^2 \right]$$

$$\mathcal{L}_{det} = -K \left\{ \det \left[\bar{q}(1 + \gamma_5)q \right] + \det \left[\bar{q}(1 - \gamma_5)q \right] \right\}$$

Mean Field Approximation

$$\Omega = - T \ln \mathcal{Z}$$

$$\mathcal{Z} = Tr e^{-\beta(H-\mu N)}$$

$$\Omega(T,\mu) = G_s \sum_{f=u,d,s} \langle \bar{q}_f q_f \rangle^2 + 4K \langle \bar{q}_u q_u \rangle \langle \bar{q}_d q_d \rangle \langle \bar{q}_s q_s \rangle$$

$$+\mathcal{U}(\Phi,\bar{\Phi},T) + \sum_{f=u,d,s} \left(\Omega_{\text{vac}}^f + \Omega_{\text{med}}^f + \Omega_{\text{mag}}^f\right)$$

$$\Omega_{\text{vac}}^f = -6 \int_{\Lambda} \frac{d^3 p}{(2\pi)^3} \sqrt{p^2 + M_f^2}$$

$$\Omega_{\text{med}}^f = -T \frac{|q_f B|}{2\pi} \sum_{k=0}^{\infty} \alpha_k \int_{-\infty}^{+\infty} \frac{dp_z}{2\pi} \left(Z_{\Phi}^+(E_f) + Z_{\Phi}^-(E_f) \right)$$

$$\Omega_{\text{mag}}^{f} = -\frac{3(|q_f|B)^2}{2\pi^2} \left[\zeta'(-1, x_f) - \frac{1}{2}(x_f^2 - x_f) \ln x_f + \frac{x_f^2}{4} \right]$$

Thermodynamics

$$\Omega = - T \ln Z$$

$$\mathcal{Z} = Tr e^{-\beta(H-\mu N)}$$

$$\epsilon = \Omega + T s + \mu \rho$$

$$p = -\Omega$$

$$s = -\frac{\partial \Omega}{\partial T}$$

$$c_v = T \frac{dS}{dT}$$

$$\Delta = \epsilon - 3 p$$

$$v_s^2 = \frac{dp}{d\epsilon}$$

$$\mathcal{M} = \frac{ap}{dB}$$

Thermo-magnetic dependent coupling prototype: SU(2) NJL model

Thermal Susceptibilities

SU(2)

G(eB,T)

Pseudo-critical temperature

SU(2)

Magnetization

SU(2)

Eur. Phys. J. A 53 (2017) 101

Pressure & Magnetization @ T = 70 MeV

SU(2)

Eur. Phys. J. A 53 (2017) 101

π_0 mass @ T = 0 SU(2)

Fixed couplings (B = 0)

SU(3)

Thermo-magnetic dependent couplings

Condensates & Susceptibilities (B = 0)

SU(3)

Thermo-magnetic dependent couplings

Condensates & Susceptibilities (eB = 0.2 GeV^2) SU(3)

Compact Stars: EoS (T=0)

Phys.Rev. C80 (2009) 065805 Phys.Rev. C79 (2009) 035807

Compact Stars: TOV (T=0)

Courtesy of Sidney Avancini

Phys.Rev. C80 (2009) 065805 Phys.Rev. C79 (2009) 035807

Final remarks

- * NJL models with fixed coupling fails to describe LQCD simulations
- * Thermo-magnetic coupling seems adequate to improve NJL models
- * Sign of magnetization also fixed by thermo-magnetic coupling
- * Pion mass at T = 0 matches LQCD calculations with G(eB)
- * Negative pressure for thermo-magnetic coupling in SU(3) case

Outlook

Verify mass x radius relation with G(eB,T) & K(eB,T)

* Check what is contributing to the negative pressure

Compute the magnetization in SU(3) with G(eB,T) & K(eB,T)