

Technische Universität München

Σ^0 Production in p + Nb Reactions at E = 3.5 GeV

Tobias Kunz for the HADES Collaboration

Strangeness in Quark Matter, 09-15 July 2017, Utrecht

Can we detect Σ^0 in HADES?

K⁰, K^{*}, K[±], Λ, Σ⁺, Ξ production in p + p, p + A, A + A Hypernuclei for Λ but not for Σ⁰? Hyperon transition form factors? Σ-N Interaction

No
$$\frac{\Lambda}{\Sigma^0}$$
 data available for p + A

- 1) P. Kowina et al. Eur. Phys. J., A22:293–299, 2004
- 2) S. Sewerin et al., Phys. Rev. Lett., 83:682–685, 1999
- 3) Landolt-Boernstein, Springer, 409 P., New Series 12, 1988

 $Λ_{dir}$: Direct production $Λ_{Σ^0}$: Λ originating from Σ⁰ decays

The HADES Experiment

Observable	Detector
р	MDC (Magnet)
β	TOF(ino)
dE/dx	MDC / TOF(ino)
e+/e-	RICH / Pre-Shower

p + Nb, E_{kin} = 3.5 GeV N = 4.21 \cdot 10⁹ evt reconstructed N = 1.3 \cdot 10⁶ A

Track/Tracklet Reconstruction

ПΠ

9

Λ^0 Candidates with Coincident e^{\pm}

Measured in acceptance:

$$\frac{\Lambda_{\text{dir}} + \Lambda_{\Sigma^0}}{\Sigma^0} = 2.3$$
$$\begin{array}{c} \pm (0.2)^{stat} \\ \pm (0.7)^{sys} \end{array}$$

 $\sigma_{\Sigma^0} = 2.3$ $\pm (0.2)^{stat}$ $\pm (0.6)^{sys}$ $\pm (0.2)^{norm}$

1) HADES Collaboration, Eur.Phys.J. A50 (2014)

Extrapolation

 χ^2 -Fit for different shapes to Exp

	Yield / 10 ³	Scaling
UrQMD	8.6	1.4
GiBUU	7.3	1.6
Λ-Like	5.2	0.4

1) HADES Collaboration, Eur.Phys.J. A50 (2014)

	0.5 < y < 1.1		Full y
Yield / 10 ³	2.7 ± 0.7		6.2 ± 2.5
σ_{Σ^0} [mb]	2.3 ± 1.2		5.8 ± 2.3
Ratio $\frac{\Lambda_{dir} + \Lambda_{\Sigma^0}}{\Sigma^0}$	$\textbf{2.3} \pm \textbf{0.6}$		2.6 ± 1.1
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv			$\frac{\Lambda_{\rm dir} + \Lambda_{\Sigma^0}}{\Sigma^0} = 3.0$
		GiBUU ²⁾	$\frac{\Lambda_{\rm dir} + \Lambda_{\Sigma^0}}{\Sigma^0} = 3.4$
		THERMUS ³⁹	$\frac{\Lambda_{\rm dir} + \Lambda_{\Sigma^0}}{\Sigma^0} = 3.9$
		 S. A. Bass et al. Prog O. Buss et al., Phys. S. Wheaton et al., Co 	. Part. Nucl. Phys., 41:255–369, 19 Rept., 512:1–124, 2012 . Phys. Com., 180:84–106, 2009

16

World Data

N(Σ⁰) reconstructed: ≈ 220 $\sigma_{p+A}^{tot}(\Sigma^0) = 5.8 \pm 2.3$ mb

 $\frac{\Lambda_{\rm dir}}{\Sigma^0}=1.6\pm0.7$

New data point for p + A!

P. Kowina et al. Eur. Phys. J., A22:293–299, 2004
 S. Sewerin et al., Phys. Rev. Lett., 83:682–685, 1999
 Landolt-Boernstein, Springer, 409 P., New Series 12, 1988

- 4) M.W. Sullivan et al., Phys. Rev., D36:674, 1987
- 5) S. A. Bass et al. Prog. Part. Nucl. Phys., 41:255–369, 1998

Outlook: HADES Upgrade

Photon detector for RICH \rightarrow MAPMTs \rightarrow Close pair eff./ \rightarrow Single e eff./ $\rightarrow \Sigma^0 \rightarrow \Lambda e^+ e^-$ (Line shape)

 $\begin{array}{l} \mbox{Electromagnetic Calorimeter} \\ \rightarrow \mbox{Direct detection of} \\ \Sigma^0 \rightarrow \Lambda \gamma \end{array}$

Forward Straw Tube Tracker \rightarrow Bigger acceptance for Λ

Thank you for your attention

Ring Mask

Errors	Value [%]
Normalization	11.2
e^+ / e^- ID ¹⁾	25
Λ ID ²⁾	4.4 - 4.9
Backgr. subtr.	7.7
Extrapolation	28.1
Statistical	8.6

1) HADES Coll., Phys. Lett. B 731 (2014)
 2) HADES Coll., Eur. Phys. J. A 50 (2014) 81

Σ^0 Signal

ЛЛ

ПП

p_T distributions

26

same a / b factors apply! 200 Mp/Np 80 +Data ---- Backgr Inv. mass 160 $p\pi + \gamma$ --- Signal 140 Region Region Region 120 3 2 100 b 80 a 60 Signal 40 Backgr Data 20 11001120114011601180120012201240126012801300 $[MeV/c^2]$ $m_{p\pi e_{Track}e_{Tracklet}}$

13.07.2017