Energy and multiplicity dependence of strange and non-strange particle production in pp collisions at the LHC with ALICE

F. Fionda⁽¹⁾, on behalf of the ALICE Collaboration

⁽¹⁾University of Bergen, Norway

Strangeness in Quark Matter 2017 Utrecht, 10-15 July

Outline

- Physics motivations
- The ALICE detector at the LHC
- Results:
 - $\checkmark p_{\tau}$ spectra shapes
 - Hadrochemistry
 - Evolution of particle production with \sqrt{s} and multiplicity
 - Outlook

Conclusions

Physics motivations

- Main goal of the ALICE experiment: study nucleus-nucleus (AA) collisions
 - Deconfined phase of matter, hydrodynamical evolution, thermal / chemical equilibrium, energy loss
- PA and pp collisions: usually play the role of control experiments
- Intriguing observation: multiplicity dependent studies in small colliding systems show remarkable commonalities with AA

Strong hints of collectivity; no sign of energy loss

The ALICE detector

- ✓ Efficient low momentum tracking (down to $p_{\tau} \sim 100 \text{ MeV}/c$)
- Excellent vertexing performance
- Extensive PID capabilities

 ✓ Multiplicity dependent light flavour production measurements in pp collisions (√s = 5, 7, 13 TeV, mid-rapidity):

Inclusive charged particles

π, K, p

- $\checkmark K_{S}^{0} \rightarrow \pi \pi$
- $\checkmark \Lambda \rightarrow p \pi$
- \checkmark $\Xi \rightarrow \Lambda \pi$
- $\checkmark \Omega \rightarrow \Lambda K$
- ✓ Resonances: $K^{*0} \rightarrow K \pi, \phi \rightarrow KK$

✓ **flattening** of the spectra at low p_{τ} , more pronounced for heavier particles

ALICE

 In Pb-Pb interpreted in terms of collective expansion of a thermalized system (radial flow) which may require a fireball in a local thermodynamical (kinetic) equilibrium 7

F. Fionda

SQM 2017

Spectra become harder for increasing multiplicity

ALICE

- ✓ **flattening** of the spectra at low p_{τ} , more pronounced for heavier particles
- In Pb-Pb interpreted in terms of collective expansion of a thermalized system (radial flow) which may require a fireball in a local thermodynamical (kinetic) equilibrium

SQM 2017

8

- Dependence of the bulk particle production on the event multiplicity in pp qualitatively similar to the one observed in p-Pb and Pb-Pb (different multiplicities!)
 - ✓ **Depletion** at low $p_{_{T}}$ / **enhanchement** at intermediate $p_{_{T}}$
- ✓ In Pb-Pb discussed in terms of collective flow and / or quark recombination (depending on $p_{_{T}}$ and centrality)

pp, √s = 7 TeV

SQM 2017

Hadrochemistry: Strangeness enhancement

- Strangeness enhancement observed in small systems
 - No commonly-used MC model is able to reproduce quantitatively the observed trends
- ✓ Double-ratio $(h/\pi)/(h/\pi)^{pp}$
 - in pp and p-Pb collisions evolves smoothly with multiplicity density
 - ✓ for proton (S=0) is consistent with unity up to highest $(dN_{ch}/d\eta)$
 - Increases faster for particles with a larger strangeness content

13

Hadrochemistry: comparison with thermal models

 Statistical (thermal) hadronization model \rightarrow strange hadron production suppressed in small systems due to the local strangeness conservation

Multiplicity dependence of particle ratios can be described within ~1-2 standard deviations

Different behaviour observed for the **\phi**

THERMUS: S. Wheaton and J. Cleymans, Comput. Phys. Commun.

SOM 2017

14

Particle ratios: evolution with \sqrt{s}

- \checkmark p_{τ} differential spectra:
 - ✓ K/ π shows no significant evolution with \sqrt{s}
 - ✓ At higher \sqrt{s} maximum slightly shifted towards higher p_{τ} values for p/π
 - Pythia8 (Monash) doesn't reproduce satisfactorily the measured ratios

 \checkmark p_{τ} integrated ratios:

- p/π seems to saturate at LHC energies
- ✓ Strange / π ratios show a hint of increase with √s

How does it scale with the event multiplicity ?

SOM 2017

15

Strangeness: evolution with $\langle dN_{ch}/d\eta \rangle$ and \sqrt{s} **Poly** $\int_{1.6}^{1.8} \int_{|y|<0.5}^{1.8} \int_$

Multiplicity dependence doesn't change with \sqrt{s} ; no model describes correctly all observed trends

SOM 2017

16

✓ More differential studies including identified particle production vs S_0 will allow to put additional constraints for further tuning and/or new model ingredients !

High multiplicity triggered data see R. De Souza poster

✓ will complement all multiplicity dependent studies reaching $\langle dN_{ch}/d\eta \rangle \sim 50 \rightarrow$ minimum bias multiplicity reach will be significantly extended !

SOM 2017

17

Conclusions

- ✓ A comprehensive study of particle production in pp collisions at several \sqrt{s} versus event multiplicity has been presented:
 - detailed studies of PID spectra shape confirm sign of collectivity in high multiplicity pp; origin and phenomenology still under investigation
 - hadrochemistry:
 - strangeness enhancement and baryon/meson ratio show a smooth evolution across all colliding systems
 - ✓ changes in the integrated particle ratios across different √s are consistent with the increase observed in $\langle dN_{ch}/d\eta \rangle$
 - comparison with models: none of the existing models is able to reproduce simultaneously all observed features, namely spectra modifications and hadrochemistry
- ✓ First results based on high multiplicity triggered data and event shape studies already available... and many more to come → stay tuned !

Conclusions

- ✓ A comprehensive study of particle production in pp collisions at several \sqrt{s} versus event multiplicity has been presented:
 - detailed studies of PID spectra shape confirm sign of collectivity in high multiplicity pp; origin and phenomenology still under investigation
 - hadrochemistry:
 - strangeness enhancement and baryon/meson ratio show a smooth evolution across all colliding systems
 - ✓ changes in the integrated particle ratios across different √s are consistent with the increase observed in $\langle dN_{ch}/d\eta \rangle$
 - comparison with models: none of the existing models is able to reproduce simultaneously all observed features, namely spectra modifications and hadrochemistry
- ✓ First results based on high multiplicity triggered data and event shape studies already available... and many more to come → stay tuned !

```
Thank you for your attention!
```


BACK-UP

The ALICE PID in ALICE

ITS:

 6 layers of silicon detectors based on three different technologies (pixel, drift, strip)

✓ primary vertex, tracking, PID at low p_{τ} (via d*E*/d*x*)

TPC:

✓ Gas-filled (Ne/CO₂) cylindrical barrel; MWPC used for the read-out

✓ tracking (up to 159 points / track), PID (via dE/dx) at intermediate and high $p_{_{T}}$ (relativistic rise)

TOF:

Multi-gap resistive plate chambers

✓ PID via velocity (β) measurement

HMPID:

 based on Ring Imaging Cherenkov (RICH) counters

21

Strangeness: evolution with $\langle dN_{\mu}/d\eta \rangle$ and \sqrt{s}

- PYTHIA8 (Monash): Color **Reconnection** may explain the observed behaviour at low / intermediate p_{τ}
- DIPSY: Color Ropes create similar features as Color Reconnection.
- EPOS LHC: based on core-corona
 - ✓ collective expansion of the core seems to overestimate the enhancement

23

Strangeness: evolution with $\langle dN_{ch}/d\eta \rangle$ and \sqrt{s}

F. Fionda

Transverse momentum spectra

 In Pb-Pb interpreted in terms of collective expansion of a thermalized system (radial flow) which may require a fireball in a local thermodynamical (kinetic) equilibrium

F. Fionda

SQM 2017

Identified particle spectra in pp

SQM 2017

✓ Identified particle spectra measured over a wide p_{τ} range

26

Spectra become harder at higher \sqrt{s}

Hadrochemistry: ratio to pions

- ✓ Smooth evolution with $\langle dN_{ch}/d\eta \rangle$ across all colliding systems !
- ✓ Decrease of K*/ π vs (dN_{cb}/d η) in Pb-Pb
- \checkmark p/ π stays constant within uncertainties
- Strangeness enhancement observed 1 in small systems

27

SQM 2017

Hadrochemistry: Strangeness enhancement

Outlook

SQM 2017