

Type: oral presentation

Beam energy and system dependence of rapidity-even dipolar flow

Thursday 13 July 2017 11:10 (20 minutes)

Anisotropic flow (v_n) measurements can provide important constraints for initial state models and for precision extraction of the temperature dependence of the specific shear viscosity η/s . Recent STAR measurements for rapidity even dipolar flow v_1^{even} confirm the important influence of momentum conservation, as well as the characteristic dependencies on $\sqrt{s_{NN}}$, centrality and p_T , expected when initial-state geometric fluctuations act in concert with hydrodynamic-like expansion to generate v_1^{even} . Dipolar flow measurements will be presented and discussed for a broad range of transverse momenta, p_T , and centrality intervals for Au+Au Beam Energy Scan ($\sqrt{s_{NN}} = 7.7 - 200$ GeV), U + U ($\sqrt{s_{NN}} = 193$ GeV), and Cu+Au, Cu+Cu, d+Au and p+Au ($\sqrt{s_{NN}} = 200 \ GeV$) collisions.

List of tracks

QCD phase diagram (BES)

Primary author: Mr ABDELRAHMAN"MAGDY", Niseem (Stony Brook University) Presenter: Mr ABDELRAHMAN"MAGDY", Niseem (Stony Brook University) Session Classification: Parallel BES

Track Classification: QCD phase diagram (BES)