

Dynamical critical fluctuations near the QCD critical point

Lijia Jiang

In collaboration with Pengfei Li, Shanjin Wu, Huichao Song

Outline

- I. Introduction
- II. Equilibrium critical fluctuations along the freeze-out surface
- III. Dynamical critical fluctuations from Langevin dynamics
- IV. Summary and outlook

QCD phase transition & CP

Critical Point --- the landmark of the QCD phase diagram.

- ☐ Theoretical analysis, CP is predicted.
- Lattice simulation :
 - small μ, finite T
 - crossover
- Effective theories
 - (P)NJL, QM, FRG, DSE, etc)
 - finite T and large μ
 - 1st order
- **■** Experimental facilities:
 - RHIC (BES)
 - FAIR, NICA
- The location of CP? The signals?

Theoretical prediction

M. Stephanov, PRL 102, 032301(2009)

$$P[\sigma] \sim \exp\{-\Omega[\sigma]/T\}, \qquad \Omega = \int d^3x \left[\frac{1}{2}(\nabla \sigma)^2 + \frac{m_\sigma^2}{2}\sigma^2 + \frac{\lambda_3}{3}\sigma^3 + \frac{\lambda_4}{4}\sigma^4 + \cdots\right].$$

$$\langle \sigma_0^2 \rangle = \frac{T}{V} \xi^2 \qquad \langle \sigma_0^3 \rangle = \frac{2\lambda_3 T}{V} \xi^6; \qquad \langle \sigma_0^4 \rangle_c = \frac{6T}{V} [2(\lambda_3 \xi)^2 - \lambda_4] \xi^8.$$

Non-gaussian fluctuations:

$$\left\langle (\delta N)^2 \right\rangle \sim \xi^2$$

$$\left\langle (\delta N)^3 \right\rangle \sim \xi^{4.5}$$

$$\left\langle (\delta N)^4 \right\rangle \sim \xi^7$$

kurtosis:

 κ_4 < 0, from the crossover side

 $\kappa_4 > 0$, from the 1st order side

Nonmonotonic in the vicinity of CP

M. Stephanov, PRL 107, 052301 (2011)

STAR BES: cumulants ratios

STAR Collaboration, PRL, 112, 032302 (2013)

$$S \sigma = \frac{C_3}{C_2} \sim \chi_B^{(3)}/\chi_B^{(2)}$$

$$\kappa \sigma^2 = \frac{c_4}{c_2} \sim \chi_{\rm B}^{(4)}/\chi_{\rm B}^{(2)}$$

Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019

Indications from experimental data:

- Deviations from statistical baselines.
- Nonmonotonic at $\sqrt{s_{NN}} \sim 20 \; GeV$.

Equilibrium critical fluctuations?

Dynamical critical fluctuations?

Equilibrium critical fluctuations

Equilibrium critical fluctuations along the freeze out surface

The basic idea

Particle emissions in HIC near Critical Point, Cooper-Frye formula: Jiang, Li & Song, PRC, 94, 024918

$$E\frac{dN}{d^3p} = \int_{\Sigma} \frac{p_{\mu}d\sigma^{\mu}}{2\pi^3} f\left(x,p\right) \xrightarrow{M \to g\left(\bar{\sigma} + \sigma\left(x\right)\right)} f\left(x,p\right) = f_0\left(x,p\right) \left[1 - g\sigma\left(x\right) / (\gamma T)\right] = f_0 + \delta f$$

Critical fluctuations for particles on the freeze-out surface

$$\langle (\delta N)^n \rangle_c = \left(\frac{g_i}{(2\pi)^3}\right)^n \left(\prod_{i=1,\dots,n} \int \frac{1}{E_i} d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu \right) \left(-\frac{g}{T}\right)^n \frac{f_{01} \dots f_{0n}}{\gamma_1 \dots \gamma_n} \langle \sigma_1 \dots \sigma_n \rangle_c$$

with n=2,3,4, the spatial correlators of sigma are written as

$$\langle \sigma_{1}\sigma_{2}\rangle_{c} = TD(x_{1} - x_{2}),$$

$$\langle \sigma_{1}\sigma_{2}\sigma_{3}\rangle_{c} = -2T^{2}\lambda_{3} \int d^{3}zD(x_{1} - z)D(x_{2} - z)D(x_{3} - z),$$

$$\langle \sigma_{1}\sigma_{2}\sigma_{3}\sigma_{4}\rangle_{c} = -6T^{3}\lambda_{4} \int d^{3}zD(x_{1} - z)D(x_{2} - z)D(x_{3} - z)D(x_{4} - z)$$

$$+12T^{3}\lambda_{3}^{2} \int d^{3}u \int d^{3}vD(x_{1} - u)D(x_{2} - u)D(x_{3} - v)D(x_{4} - v)D(u - v).$$

In an isothermal and equilibrated system, integrate over coordinate space, the results in Stephanov's PRL09 are reproduced.

Acceptance dependence of BES data

Xiaofeng Luo(for the STAR Collaboration), PoS(CPOD2014)019

The signals are significantly enhanced when the pt and y acceptance are increased.

Acceptance dependence of critical fluctuations

Similar behaviors for critical fluctuations with blast wave model. [Ling & Stephanov PRC 93, 034915]

Cumulants and cumulants ratios

Net Protons 0-5%

Jiang, Li & Song, PRC, 94, 024918

- adding statistical baselines to critical fluctuations.
- The C4 and $\kappa\sigma^2$ are approximately described.
- over predict C2 and C3 due to positive contribution of critical fluctuations.

Possible issues

- **Possible issues before the comparison with experimental data:**
 - the relation between the critical fluctuations and statistical fluctuations
 - contributions from other non-critical fluctuations
 the volume fluctuations, participant fluctuations, etc
 [P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960 (2017) 114-130]
 - multi-protons correlation and stopping effect at low collision energies.

```
[A. Bzdak, V. Koch, N. Strodthoff, PhysRevC.95.054906(2017);
A. Bzdak, V. Koch, V. Skokov, arXiv: 1612.05128 ]
```

Possible issues

- **❖** Possible issues before the comparison with experimental data:
 - the relation between the critical fluctuations and statistical fluctuations
 - contributions from other non-critical fluctuations
 the volume fluctuations, participant fluctuations, etc
 [P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960 (2017) 114-130]
 - multi-protons correlation and stopping effect at low collision energies.

```
[A. Bzdak, V. Koch, N. Strodthoff, PhysRevC.95.054906(2017);
A. Bzdak, V. Koch, V. Skokov, arXiv: 1612.05128 ]
```

dynamical critical fluctuations?

Real time evolution from Fokker-Plank equation

The Fokker-Plank equation

Mukherjee, Venugopalan & Yin PRC 2015

$$\partial_{\tau} P(\sigma; \tau) = \frac{1}{(m_{\sigma}^{2} \tau_{\text{eff}})} \left\{ \partial_{\sigma} \left[\partial_{\sigma} \Omega_{0}(\sigma) + V_{4}^{-1} \partial_{\sigma} \right] P(\sigma; \tau) \right\},\,$$

The higher order cumulants

$$\partial_{\tau} \kappa_{2}(\tau) = -2 \tau_{\text{eff}}^{-1} \left(b^{2}\right) \left[\left(\frac{\kappa_{2}}{b^{2}}\right) F_{2}(M) - 1 \right] \left[1 + \mathcal{O}(\epsilon^{2})\right],$$

$$\partial_{\tau} \kappa_{3}(\tau) = -3 \tau_{\text{eff}}^{-1} \left(\epsilon b^{3}\right) \left[\left(\frac{\kappa_{3}}{\epsilon b^{3}}\right) F_{2}(M) + \left(\frac{\kappa_{2}}{b^{2}}\right)^{2} F_{3}(M) \right] \times \left[1 + \mathcal{O}(\epsilon^{2})\right],$$

$$\partial_{\tau} \kappa_4(\tau) = -4 \tau_{\text{eff}}^{-1} \left(\epsilon^2 b^4 \right) \left\{ \left(\frac{\kappa_4}{\epsilon^2 b^4} \right) F_2(M) + 3 \left(\frac{\kappa_2}{b^2} \right) \left(\frac{\kappa_3}{\epsilon b^3} \right) F_3(M) + \left(\frac{\kappa_2}{b^2} \right)^3 F_4 \right\} \times \left[1 + \mathcal{O}(\epsilon^2) \right].$$

- Memory effects from dynamical evolution
- The sign and value of Skewness and Kurtosis can be different from equilibrated ones.

Different dynamical equations

Fokker-Plank equation:

$$\frac{d\kappa_n}{d\tau} = L[\kappa_n, \kappa_{n-1}, \ldots]$$

A realistic dynamical evolution in (t, x) space? spatial and events information averaged out.

Langevin equation:

$$\partial^{\mu}\partial_{\mu}\sigma\left(t,x\right)+\eta\partial_{t}\sigma\left(t,x\right)+V_{eff}^{\prime}\left(\sigma\right)=\xi\left(t,x\right)$$

- event-by-event simulation
- spatial time information recorded

Dynamical critical fluctuations from Langevin dynamics

e-b-e Langevin dynamics

150

Jiang, Wu, Song, arXiv:1704.04765; in preparation

CP ~ (205, 100.2) MeV

150

50

0

The Lagrangian of linear sigma model

$$\mathcal{L} = \bar{q} \left[i \gamma^{\mu} \partial_{\mu} - g \left(\sigma + i \gamma_{5} \vec{\tau} \cdot \vec{\pi} \right) + \gamma_{0} \mu \right] q$$
$$+ \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi} \right) - U \left(\sigma, \vec{\pi} \right)$$

• Effective potential: ($<ec{\pi}>=0$)

$$V_{eff}(\sigma) = U(\sigma) + \Omega_{q\bar{q}}(\sigma; T, \mu)$$

$$U(\sigma) = \frac{1}{4}\lambda^2 (\sigma^2 - v^2)^2 - h\sigma - U_0$$

$$\Omega_{q\bar{q}}(\sigma; T, \mu) = -d_q \int \frac{d^3p}{(2\pi)^3} \left\{ E + T \ln \left[1 + e^{-(E-\mu)/T} \right] + T \ln \left(1 + e^{-(E+\mu)/T} \right) \right\}$$

Isothermal system, with the decreasing of temperature

$$\frac{T\left(t\right)}{T_0} = \left(\frac{t}{t_0}\right)^{-0.45}$$
 (Hubble like)

Chiral hydrodynamics, refer to
 K. Peach et al, PRC68 (2003), M. Nahrgang et al, PRC84 (2011), C. Herold et al, PRC93 (2016),

300

Dynamical evolution of sigma's cumulants

Jiang, Wu, Song, arXiv:1704.04765; in preparation

• On the crossover side ($\mu = 200~MeV$)

1.
$$T_0 = 107 \, MeV$$
, different damping

- The cumulants are from statistics on 100,000 events
- The memory effects ,the sign and value of C3, C4 different from equilibrium ones.
- The magnitude of critical fluctuations strongly depends on the initial conditions.

Dynamical evolution of sigma's cumulants

Jiang, Wu, Song, arXiv:1704.04765; in preparation

• On the crossover side ($\mu = 200~MeV$)

- The cumulants are from statistics on 100,000 events
- The memory effects ,the sign and value of C3, C4 different from equilibrium ones.
- The magnitude of critical fluctuations strongly depends on the initial conditions.

Super cooling in 1st order phase transition

Jiang, Wu, Song, arXiv:1704.04765; in preparation

• On the 1st order side ($\mu = 240 \ MeV$)

Super cooling — Dynamical critical fluctuations much larger than equilibrium fluctuations

Sigma's cumulants at freeze-out

Freeze-out

The starting points:

$$T_0 = T_c + 4 \, MeV$$
, where $m_{\sigma} \sim 1 \, fm$.

The assumed freeze-out line:

$$T_{freeze} < T_c$$

Comparison with the experimental data

Towards the comparison with ex-data:

- Location of the critical point
 - the current model: $(\mu_c, T_c) \sim$ (205, 100.2) MeV 3D Ising mapping
- critical region: T_0 and T_{freeze} ?
- Damping coefficient $\eta(T)$
- Realistic evolution of the system

Summary and outlook

- **STAR BES provided exciting measurements on cumulants for net protons.**
- **Equilibrium critical fluctuations on the freeze-out surface,**
 - qualitatively describe the acceptance dependence.
 - C₄ and $\kappa\sigma^2$ can be approximately described, over predict C₂ and C₃.
- Dynamical critical fluctuations from Langevin dynamics
 - Memory effects on crossover side and 1st order phase transition side
 - Dynamical critical fluctuations on possible freeze out line present different sign and values from the equilibrium ones.
- ☐ Future work
 - a realistic micro/macroscopic evolution in the critical regime.
 - the relations among different source of fluctuations.

- ...

Thank you!