Production and Collective Flow of Open Heavy Flavor in PbPb Collisions with CMS

Yen-Jie Lee (MIT)
For the CMS collaboration

SQM 2017
Utrecht, Netherlands
10-15 July, 2017

Supported by the US DoE Early Career Research Award Program
Heavy quarks are ideal probes for the QGP

- Mostly produced early in time, p_T spectra could be calculated with pQCD
- Could be traced (though heavy flavor mesons)

At intermediate to high p_T:
- Test our understanding of jet quenching
- Smaller energy loss than gluons (color charge)
- Smaller radiative energy loss than light quarks due to dead-cone effects

At low transverse momentum:
- “Kicked around” by quasi-particles in the QGP
- Probe the temperature and density of the medium

Heavy quarks experience \textbf{drag force} from the QGP

New measurements of Heavy flavor R_{AA} and v_n from CMS

Yen-Jie Lee (MIT)
Open Heavy Flavor with CMS
2015 pp and PbPb data at 5.02 TeV

- **Non-prompt J/ψ and B meson:**
 - Dimuon trigger which sample the full delivered luminosity by LHC

- **Low p_T D^0:** MB and event centrality triggered events
 - pp: 2B MB events
 - PbPb: 170M 0-100% and 270M 30-100% events analyzed

- **High p_T D^0:** dedicated D^0 triggers for both PbPb and pp
 - Compared to minimum bias triggers, the high p_T D^0 statistics are increased by a factor of **800 (30)** in pp (PbPb) collisions

(1) **Hardware level jet trigger**
 (Level 1 filter)

(2) **Online D^0 to $K\pi$ analysis** in the high level trigger computing farm (HLT filter)
D⁰ identification in CMS

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
D^0 identification in CMS

- No K-π identification for charged tracks used
- D^0 from pairs of *oppositely charged tracks* with both Kπ and πK mass assumptions (2 D^0 candidates per pair)
- Secondary vertex reconstruction (SV)
- D^0 identification:
 - Secondary vertex quality

Diagram:
- Secondary vertex
- Primary vertex
D⁰ identification in CMS

- No K-π identification for charged tracks used
- D⁰ from pairs of **oppositely charged tracks** with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
- Secondary vertex reconstruction (SV)
- D⁰ identification:
 - Secondary vertex quality
 - 3D decay length significance \((d_0/\sigma(d_0)) \)
D⁰ identification in CMS

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
- Secondary vertex reconstruction (SV)
- D⁰ identification:
 - Secondary vertex quality
 - 3D decay length significance \((d_0/\sigma(d_0))\)
 - Angle \(\alpha\) between D⁰ momentum \(\vec{P}_{D^0}\) and D⁰ flight direction \(\vec{d}_0\)
D^0 identification in CMS

- No K-π identification for charged tracks used
- D^0 from pairs of **oppositely charged tracks** with both Kπ and πK mass assumptions (2 D^0 candidates per pair)
- Secondary vertex reconstruction (SV)
- D^0 identification:
 - Secondary vertex quality
 - 3D decay length significance \((d_0/\sigma(d_0)) \)
 - Angle \(\alpha \) between D^0 momentum \(\vec{P}_{D^0} \) and D^0 flight direction \(\vec{d}_0 \)
 - D^0 DCA (used in \(v_n \) analysis)
 - DCA < 0.008 cm
 - Suppress non-prompt D^0
Double Gaussian for $D^0 \rightarrow K\pi$ signal

3rd order polynomial for Combinatorial background

Gaussian shape for Swapped mass hypothesis (Wrong $K-\pi$ mass assignment)
Extraction of Prompt D^0 with DATA

- Significant contribution of non-prompt D^0 from b hadron decays at LHC ($O(10\%)$)
- CMS separates prompt and non-prompt D^0 with D^0 DCA
• Significant contribution of non-prompt D^0 from b hadron decays at LHC ($O(10\%)$)
• CMS separates prompt and non-prompt D^0 with D^0 DCA

Extraction of Prompt D^0 with DATA

- Prompt D^0
- Non-prompt D^0
- D^0 vertex
- Primary vertex
- Smaller D^0 DCA
- Larger D^0 DCA
Extraction of Prompt D⁰ with DATA

- Significant contribution of non-prompt D⁰ from b hadron decays at LHC (O(10%))
- CMS separates prompt and non-prompt D⁰ with D⁰ DCA
- Prompt fraction extraction from a MC template fit

PbPb 0-100%

PbPb \(s_{NN} = 5.02 \text{ TeV} \)

CMS Preliminary

![D⁰ DCA (cm) vs. dN / d(D⁰ DCA) (cm⁻¹)]

- Cent. 0-100%
- \(|y| < 1.0 \)
- \(10.0 < p_T < 12.5 \text{ GeV/c} \)
- Data
- Prompt D⁰
- Non-Prompt D⁰

![D⁰ p_T (GeV/c) vs. Fraction](blue and red graphs)

- \(|y| < 1.0 \)
- Prompt
- Non-prompt
Prompt $D^0 R_{AA}$ in PbPb at 5.02 TeV

- Strongest suppression around $p_T = 5-8$ GeV
- 0-10%: Similar suppression compared to ALICE 2.76 TeV result
D⁰, B⁺ and h± R_{AA} in PbPb at 5.02 TeV

PbPb 5.02 TeV

25.8 pb⁻¹ (5.02 TeV pp) + 404 x⁻¹ (5.02 TeV PbPb)

CMS
Preliminary

• No significant meson flavor dependence of R_{AA} at high p_T with the current accuracy

• New B⁺ R_{AA} data: could constrain the coupling strength between b-quark and the medium in the theoretical models

B⁺ R_{AA} vs. theory

CMS

B⁺ Centrality 0-100%

Charged particle R_{AA} \textbf{JHEP 04 (2017) 039}
B meson R_{AA} \textbf{arXiv:1705.04727} submitted to PRL
D^0, B^+, b→J/ψ and h^± R_{AA} in PbPb at 5.02 TeV

PbPb 5.02 TeV

25.8 pb\(^{-1}\) (5.02 TeV pp) + 404 \(\mu\)b\(^{-1}\) (5.02 TeV PbPb)

- CMS Preliminary
- charged hadrons \(|y| < 1\)
- \(D^0 + \bar{D}^0\) \(|y| < 1\)
- \(B^\pm\) \(|y| < 2.4\)
- nonprompt J/ψ
- 1.8 < \(|y| < 2.4\)
- \(|y| < 2.4\)

NEW!

CMS

- \(R_{AA}\)
- Nonprompt J/ψ
- 6.5 < \(p_T\) < 50 GeV/c
- Cent. 0-100%

New \(b→J/ψ R_{AA}\) results at 5.02 TeV!

- Significant meson flavor dependence at low \(p_T\)

- \(b→J/ψ R_{AA}\) from 2.76 and 5.02 TeV are compatible to each other.

- No significant \(|y|\) dependence at 5.02 TeV

Charged particle \(R_{AA}\) **JHEP 04 (2017) 039**

B meson \(R_{AA}\) **arXiv:1705.04727 submitted to PRL**

\(b→J/ψ R_{AA}\) **CMS-PAS-HIN-16-025**
D⁰ Azimuthal Anisotropy: Scalar Product Method

\[Q_n = \sum_j w_j e^{in_j} \]

Sum over tracks (tracker), or towers (Hadron Forward Calorimeter)

\[w_j: \text{tower } E_T \text{ for HF, track } p_T \text{ for tracker} \]

- Large \(\eta \) gap applied (\(|\Delta \eta| > 3.0\))
- \(v_n\{\text{SP}\} \), non-ambiguous measure of \(\sqrt{\langle v_n^2 \rangle} \)

\[v_n \{\text{SP}\} = \sqrt{\frac{\langle Q_n \times Q_{nA}^* \rangle}{\langle Q_{nA} \times Q_{nB}^* \rangle \langle Q_{nA} \times Q_{nC}^* \rangle}} \]

Scaling factor from 3 sub events

\[\langle \rangle \]

Luzum, Ollitrault PRC87 (2013), 044907
Extract v_n of D^0

D^0 candidate v_n are first measured as a function of candidate mass

D^0 v_n extracted with a simultaneous fit on D^0 mass spectra and v_n (v_2 or v_3) vs. mass:

$$v_n^{Sig+Bkg}(m_{inv}) = \alpha(m_{inv}) v_n^{sig} + (1 - \alpha(m_{inv})) v_n^{Bkg}(m_{inv})$$

$\alpha(m_{inv})$: D^0 signal fraction
Prompt $D^0 v_2$ in PbPb at 5.02 TeV

- Positive prompt $D^0 v_2$ observed in p_T range studied
 - Low p_T: charm quark collective motion
 - High p_T: path length dependence of energy loss
- In 30-50%, $D^0 v_2$ peaks around 3 GeV, then decrease vs p_T
Prompt D^0 v_2 vs. Charged Particle v_2

- **Low p_T:** v_2 (prompt D^0) < v_2 (charged particle)
 - Indication of weaker centrality dependence than charged particles

- **High p_T:** v_2 (prompt D^0) ≈ v_2 (charged particle)
 - A consistent picture of ΔE (charm) ≈ ΔE (light quark) at high p_T
 - from R_{AA} and v_2 analyses

- Similar p_T dependence
Prompt $D^0 v_2$ vs. Theoretical Models

CMS Preliminary PbPb $\sqrt{s_{NN}} = 5.02$ TeV

- **Low p_T:** v_2 (prompt $D^0) < v_2$ (charged particle)
 - Indication of weaker centrality dependence than charged particles

- **High p_T:** v_2 (prompt $D^0) \approx v_2$ (charged particle)
 - A consistent picture of (path-length dependent) ΔE (charm) $\approx \Delta E$ (light quark) at high p_T from R_{AA} and v_2 analyses

- Similar p_T dependence

Yen-Jie Lee (MIT)
Open Heavy Flavor with CMS
Prompt $D^0 v_3$ in PbPb at 5.02 TeV

- First measurement of $D^0 v_3$
- Low p_T: v_3 (prompt D^0) > 0; High p_T: v_3 (prompt D^0) ≈ 0
- v_3 Peaks around 3-5 GeV, then decrease vs. p_T
- Little centrality dependence

CMS PAS HIN-16-007
Prompt $D^0 v_3$ vs. Charged Particle v_3

- Low p_T: v_3 (prompt D^0) < v_3 (charged particle)
- High p_T: v_3 (prompt D^0) ≈ v_3 (charged particle)
- Similar p_T dependence
- Both have little centrality dependence
Prompt $D^0 v_3$ vs. Theoretical Models

- Low p_T: v_3 (prompt D^0) $< v_3$ (charged particle)
- High p_T: v_3 (prompt D^0) $\approx v_3$ (charged particle)
- Similar p_T dependence
- Both have little centrality dependence

CMS Preliminary PbPb $\sqrt{s_{NN}} = 5.02$ TeV

Cent. 0-10%

Cent. 10-30%

Cent. 30-50%

- D^0, $|y| < 1.0$
- Charged particle, $|\eta| < 1.0$

CMS PAS HIN-16-007
Summary & Outlook

- **D⁰, B⁺ and b→J/ψ R_{AA} in PbPb at 5.02 TeV**
 - First fully reconstructed B⁺ analysis
 - b→J/ψ R_{AA} (NEW): no significant |y| dependence
 - Strong suppression of D⁰, B⁺ and b→J/ψ, similar to h± at high p_T
 - Significant flavor dependence of R_{AA} at low p_T

- **D⁰ v₂ and v₃ are measured for 3 centrality classes in PbPb at 5.02 TeV**
 - Weaker centrality dependence of D⁰ v₂ than h± v₂
 - First measurement of D⁰ v₃
 - Data consistent with models with charm flow:
 Light flavor azimuthal anisotropy could “transfer” to heavy flavor particles efficiently

- **Provide important inputs for theory models**
 - Many more results from 5 TeV data in the pipeline
 - Expect high precision results with 2018 and Run III data
 … stay tuned!
• Backup slides
The Life of Charm Quark in the Soup

- At low p_T: $D^0 v_2$ signal is significantly lower than that of charged particles
- At high p_T: $D^0 v_2 \approx$ charged particle v_2

Same parton energy loss picture from high $p_T D^0 R_{AA}$ and v_2 measurements
• Run I data: 30M MB PbPb events at 2.76 TeV
• D^0 R_{AA} both as functions of p_T and centrality
 • pp reference: data-extrapolated and FONLL
• Hint of flavor dependent R_{AA}

Nonprompt J/ψ

- Beauty: nonprompt J/ψ, $p_T \in [6.5,30]$ GeV/c, $|y| < 1.2$
- Charm: prompt D, $p_T \in [8,16]$ GeV/c
- CMS PAS-HIN-15-005: $|y| < 1$
- Charged hadrons, $p_T \in [7.2,9.6]$ GeV/c
- EPJC 72 (2012): $|y| < 1$

D meson measurement with CMS in Run-I

- **Run I data**: 30M MB PbPb events at 2.76 TeV
- **D^0 R_{AA}**: both as functions of p_T and centrality
 - **pp reference**: data-extrapolated and FONLL
- **Hint of flavor dependent R_{AA}**

CMS Preliminary

- **PbPb $s_{NN} = 2.76$ TeV**
- **R_{AA}^{*}**
- **Filled markers**: data-extrapolated reference
- **Open markers**: FONLL reference
- **Cent. 0-100%**
- **$|y| < 1.0$**

Nonprompt J/ψ

- **D^0 h^{\pm}**
- **$<N_{part}>$**
- **CMS PAS HIN-15-005**

Yen-Jie Lee (MIT)
Open Heavy Flavor with CMS
Online D^0 triggers

Hardware L1 jet triggers selection

Track selection in software triggers

D^0 selection

- Level-1 (L1) jet algorithm with online background subtraction
- Track seed p_T cut applied:
 - $p_T > 2$ GeV for pp
 - $p_T > 8$ GeV for PbPb
- D^0 online reconstruction
 - loose selection based on D^0 vertex displacement
Comparison between D0 and non-prompt J/ψ

CMS

PbPb $\sqrt{s_{NN}} = 5.02$ TeV

Cent. 10-30% $|y| < 1.0$

D^0

Nonprompt J/ψ

$\text{arXiv}:1610.00613$, Cent. 10-60%

p_T 3-6.5 GeV, 1.6<$|y|<$2.4

p_T 6.5-30 GeV, $|y| <$ 2.4

Filled box: syst. from non-prompt D^0

Open box: other syst.

Yen-Jie Lee (MIT) Open Heavy Flavor with CMS
Comparison with model calculations

Important inputs and strong constraints on theory:
- Theoretical calculations need to describe $D^0 R_{AA}$ and v_n results simultaneously in a wide kinematic range
- Good progress has been made recently

M. Djordjevic: PRC 92, 024918 (2015)
PHSD: PRC 93, 034906 (2016)
LBT: PRC 94 014909 (2016)
I. Vitev: PRD 93, 074030 (2015)
CUJET3: JHEP 1602 (2016) 169
TAMU: PLB 735 (2014) 445

Open Heavy Flavor with CMS
$D^0 \nu_2$ compared to light hadrons

$D^0 \nu_2$ seems to fall on the trend of light flavor

Xin Dong (QM2017)