Production and Collective Flow of Open Heavy Flavor in PbPb Collisions with CMS

Yen-Jie Lee (MIT) For the CMS collaboration

SQM 2017 Utrecht, Netherlands 10-15 July, 2017

Utrecht 2017

Supported by the US DoE Early Career Research Award Program

Yen-Jie Lee (MIT)

Introduction

Heavy quarks are ideal probes for the QGP

- Mostly produced early in time, p_T spectra could be calculated with pQCD
- Could be traced (though heavy flavor mesons)

Picture of pQCD based models

At low transverse momentum:

- "Kicked around" by quasi-particles in the QGP
- Probe the temperature and density of the medium

Picture of AdS/CFT based models

At intermediate to high p_T:

- Test our understanding of jet quenching
- Smaller energy loss than gluons (color charge)
- Smaller radiative energy loss than light quarks due to dead-cone effects
 D, B

Heavy quarks experience drag force from the QGP

New measurements of Heavy flavor R_{AA} and v_n from CMS

Yen-Jie Lee (MIT)

Open Heavy Flavor with CMS

2

Jtrecht 2017

2015 pp and PbPb data at 5.02 TeV

• Non-prompt J/ψ and B meson:

- Dimuon trigger which sample the full delivered luminosity by LHC
- Low p_T D⁰: MB and event centrality triggered events
 - pp: 2B MB events

Yen-Jie Lee (MIT)

- PbPb: 170M 0-100% and 270M 30-100% events analyzed
- High p_T D⁰: dedicated D⁰ triggers for both PbPb and pp
 - Compared to minimum bias triggers, the high p_T D⁰ statistics are increased by a factor of 800 (30) in pp (PbPb) collisions

Open Heavy Flavor with CMS

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
- Secondary vertex reconstruction (SV)
- D⁰ identification:
 - Secondary vertex quality

Secondary vertex

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
- Secondary vertex reconstruction (SV)
- D⁰ identification:
 - Secondary vertex quality
 - 3D decay length significance $(d_0/\sigma(d_0))$

Secondary vertex

6

Primary vertex

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
- Secondary vertex reconstruction (SV)
- D⁰ identification:
 - Secondary vertex quality
 - 3D decay length significance $(d_0/\sigma(d_0))$
 - Angle **\alpha** between D⁰ momentum \vec{P}_{D^0} and D⁰ flight direction \vec{d}_0

Primary vertex

 d_0

 \vec{P}_{D^0}

Secondary vertex

- No K-π identification for charged tracks used
- D⁰ from pairs of oppositely charged tracks with both Kπ and πK mass assumptions (2 D⁰ candidates per pair)
- Secondary vertex reconstruction (SV)
- D⁰ identification:
 - Secondary vertex quality
 - 3D decay length significance $(d_0/\sigma(d_0))$
 - Angle **\alpha** between D⁰ momentum \vec{P}_{D^0} and D⁰ flight direction \vec{d}_0
 - D⁰ DCA (used in v_n analysis) DCA < 0.008 cm Suppress non-prompt D⁰

Primary vertex

C

 \vec{P}_{D^0}

Secondary vertex

D⁰ Signal Extraction

Yen-Jie Lee (MIT)

Extraction of Prompt D⁰ with DATA

- Significant contribution of non-prompt D⁰ from b hadron decays at LHC (O(10%))
- CMS separates prompt and non-prompt D⁰ with D⁰ DCA

Extraction of Prompt D⁰ with DATA

- Significant contribution of non-prompt D⁰ from b hadron decays at LHC (O(10%))
- CMS separates prompt and non-prompt D⁰ with D⁰ DCA

Extraction of Prompt D⁰ with DATA

- Significant contribution of non-prompt D⁰ from b hadron decays at LHC (**O(10%)**)
- CMS separates prompt and non-prompt D⁰ with D⁰ DCA
- Prompt fraction extraction from a MC template fit

Yen-Jie Lee (MIT)

Prompt D⁰ R_{AA} in PbPb at 5.02 TeV

PbPb 0-100%

PbPb 0-10%

- Strongest suppression around $p_T = 5-8$ GeV
- 0-10%: Similar suppression compared to ALICE 2.76 TeV result

Open Heavy Flavor with CMS

D⁰, B⁺ and h[±] R_{AA} in PbPb at 5.02 TeV

PbPb 5.02 TeV

No significant meson flavor dependence of R_{AA} at high p_T with the current accuracy

Charged particle R_{AA} <u>JHEP 04 (2017) 039</u> B meson R_{AA} <u>arXiv:1705.04727</u> submitted to PRL New B⁺ R_{AA} data: could constrain the coupling strength between b-quark and the medium in the theoretical models

CMS

Yen-Jie Lee (MIT)

Open Heavy Flavor with CMS

D⁰ Azimuthal Anisotropy: Scalar Product Method

Scaling factor from 3 sub events

- Large η gap applied ($|\Delta \eta| > 3.0$)
- v_n {SP}, non-ambiguous measure of $\sqrt{\langle v_n^2 \rangle}$

Luzum, Ollitrault PRC87 (2013), 044907

tracker

Utrecht 2017

Extract v_n of D^0

D⁰ candidate v_n are first measured as a function of candidate mass

 $D^0 v_n$ extracted with a simultaneous fit on D^0 mass spectra and $v_n (v_2 \text{ or } v_3) v_3$. mass: $\alpha(m_{inv})$: D^0 signal fraction

$$v_n^{Sig+Bkg}(m_{inv}) = \alpha(m_{inv})v_n^{sig} + (1 - \alpha(m_{inv}))v_n^{Bkg}(m_{inv})$$

Open Heavy Flavor with CMS

Prompt D⁰ v₂ in PbPb at 5.02 TeV

- Positive prompt $D^0 v_2$ observed in p_T range studied
 - Low p_T : charm quark collective motion
 - High p_T : path length dependence of energy loss
- In 30-50%, D⁰ v₂ peaks around 3 GeV, then decrease vs p_T

CMS PAS HIN-16-007

Prompt D⁰ v₂ vs. Charged Particle v₂

- Low p_T : v_2 (prompt D^0) < v_2 (charged particle)
 - Indication of weaker centrality dependence than charged particles
- High $p_T: v_2$ (prompt D^0) $\approx v_2$ (charged particle)
 - A consistent picture of ΔE (charm) ≈ ΔE (light quark) at high p_T from R_{AA} and v₂ analyses
- Similar p_T dependence

CMS PAS HIN-16-007

19

Prompt D⁰ v₂ vs. Theoretical Models

- Low p_T : v_2 (prompt D^0) < v_2 (charged particle)
 - Indication of weaker centrality dependence than charged particles
- High p_T : v_2 (prompt D^0) $\approx v_2$ (charged particle)
 - A consistent picture of (path-length dependent)
 ΔE (charm) ≈ ΔE (light quark) at high p_T from R_{AA} and v₂ analyses
- Similar p_T dependence

CMS PAS HIN-16-007

20

Prompt $D^0 v_3$ in PbPb at 5.02 TeV

CMS Preliminary PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- First measurement of D⁰ v₃
- Low p_T : v_3 (prompt D^0) > 0; High p_T : v_3 (prompt D^0) ≈ 0
- v_3 Peaks around 3-5 GeV, then decrease vs. p_T
- Little centrality dependence

CMS PAS HIN-16-007

Utrecht 2017

Prompt D⁰ v₃ vs. Charged Particle v₃

- Low p_T : v_3 (prompt D^0) < v_3 (charged particle)
- High p_T : v_3 (prompt D^0) $\approx v_3$ (charged particle)
- Similar p_T dependence
- Both have little centrality dependence

CMS PAS HIN-16-007

22

Prompt D⁰ v₃ vs. Theoretical Models

- Low p_T : v_3 (prompt D^0) < v_3 (charged particle)
- High p_T : v_3 (prompt D^0) $\approx v_3$ (charged particle)
- Similar p_T dependence
- Both have little centrality dependence

CMS PAS HIN-16-007

23

Summary & Outlook

- D⁰, B⁺ and b \rightarrow J/ ψ R_{AA} in PbPb at 5.02 TeV

- First fully reconstructed B⁺ analysis
- $b \rightarrow J/\psi R_{AA}$ (NEW): no significant |y| dependence
- Strong suppression of $D^0,\,B^+$ and $b{\rightarrow}J/\psi,\,similar$ to h^\pm at high p_T
- Significant flavor dependence of $\mathsf{R}_{\mathsf{A}\mathsf{A}}$ at low p_T

D⁰ v₂ and v₃ are measured for 3 centrality classes in PbPb at 5.02 TeV

- Weaker centrality dependence of $D^0 v_2$ than $h^{\pm} v_2$
- First measurement of $D^0 v_3$
- Data consistent with models with charm flow: Light flavor azimuthal anisotropy could "transfer" to heavy flavor particles efficiently

Provide important inputs for theory models

- Many more results from 5 TeV data in the pipeline
- Expect high precision results with 2018 and Run III data ... stay tuned!

Yen-Jie Lee (MIT)

• Backup slides

Yen-Jie Lee (MIT)

Open Heavy Flavor with CMS

The Life of Charm Quark in the Soup

- At low p_T: D⁰ v₂ signal is significantly lower than that of charged particles
- At high p_T: D⁰ v₂ ≈ charged particle v₂
 Same parton energy loss picture from high p_T D⁰ R_{AA} and v₂ measurements

26

CMS-PAS-HIN-16-007

Utrecht 2017

D meson measurement with CMS in Run-I

- Run I data: 30M MB PbPb events at 2.76 TeV
- $D^0 R_{AA}$ both as functions of p_T and centrality
 - pp reference: data-extrapolated and FONLL
- Hint of flavor dependent R_{AA} CMS PAS HIN-15-005

Online D⁰ triggers

 Level-1 (L1) jet algorithm with online background subtraction

Track seed p_T cut applied:

- $p_T > 2 \text{ GeV for pp}$
- $p_T > 8 \text{ GeV for PbPb}$

- D⁰ online reconstruction
- loose selection based on D⁰ vertex displacement

28

Utrecht 2017

Comparison between D0 and non-prompt J/ ψ

Comparison with model calculations

Important inputs and strong constraints on theory:
 ➢ Theoretical calculations need to describe D⁰ R_{AA} and v_n results simultaneously in a wide kinematic range
 ➢ Good progress has been made recently

M. Djordjevic: PRC 92, 024918 (2015) **PHSD:** PRC 93, 034906 (2016) **I. Vitev:** PRD 93, 074030 (2015) **CUJET3:** JHEP 1602 (2016) 169 **LBT:** PRC 94 014909 (2016) **TAMU:** PLB 735 (2014) 445 **L. Pang:** PRD 91, 074027 (2015)

Yen-Jie Lee (MIT)

D⁰ v₂ compared to light hadrons

 $D^0 v_2$ seems to fall on the trend of light flavor

Xin Dong (QM2017)

Utrecht 2017

