

Alessandro De Falco for the ALICE collaboration SQM 2017 10-15/07/2017 Utrecht, the Netherlands

Outline

- Introduction
- The ALICE detector
- Dimuon analysis
 - Dimuon mass spectra and background subtraction
 - Signal extraction
- New results in pp
 - ϕ cross section at \sqrt{s} = 5.02 TeV and \sqrt{s} = 8 TeV
 - Comparison with models and evolution with \sqrt{s}
- New results in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - ϕR_{AA} vs N_{PART} and p_{T}

- Excellent probe of strangeness production in heavy-ion collisions
 - small inelastic cross section for interaction with non-strange hadrons
 - Long lifetime (~45 fm/c) compared to the fireball (~10 fm/c) Rescattering effects should be negligible
- Observables considered in nucleus-nucleus collisions:
 - Evolution of p_{T} spectra vs centrality
 - Nuclear modification factor R_{AA}
- pp collisions provide the baseline

The ALICE detector

Measurements in pp collisions

- Dimuon analysis performed on the opposite-sign mass spectra
 - Like-sign dimuons used for background normalization
- Combinatorial background subtraction: event mixing technique
- Data selection
 - Matching between muon tracks reconstructed in the tracking chambers and track segments in the trigger chambers
 - $-4 < \eta_{\mu} < -2.5$
 - $2.5 < y_{\mu\mu} < 4$
- Integrated luminosity:
 - L_{INT} =106.3 nb⁻¹ at \sqrt{s} = 5.02 TeV
 - L_{INT} =2.4 pb⁻¹ at \sqrt{s} = 8 TeV

Different trigger selections: lower p_{T} can be reached at 5.02 TeV Larger statistics at 8 TeV: higher p_{T} -reach

Measurements in pp collisions

Differential cross sections in pp

- Differential cross sections measured for $1 < p_{\tau} < 7$ GeV/*c* at $\sqrt{s} = 5.02$ TeV and for $1.5 < p_{\tau} < 8$ GeV/*c* at $\sqrt{s} = 8$ TeV
- Data best described by Phojet

Evolution with \sqrt{s} of the pp cross section

- Differential cross section hardens when increasing \sqrt{s}
- Cross section integrated in the common $p_{\rm T}$ range well described by Phojet
- Ongoing analysis at $\sqrt{s} = 13$ TeV will complete the picture of ϕ production at forward rapidity at the LHC energies

Data sample in Pb-Pb collisions at 5.02 TeV

- Data sample collected in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in 2015
- Integrated luminosity: 225 μb⁻¹
- Same analysis criteria as in pp
- Data selection
 - Matching between muon tracks reconstructed in the tracking chambers and track segments in the trigger chambers
 - High $p_{T(u)}$ trigger threshold limits the analysis to $p_T > 2 \text{ GeV}/c$

- $2.5 < y_{\mu\mu} < 4$

Dimuon mass spectra and combinatorial background

Correlated/uncorrelated pairs

Ratio between correlated pairs and combinatorial background at the ϕ mass grows from ~0.05 in the most central bin (0-10%) to ~5 in the most peripheral one (80-90%)

Fit to the mass spectra in Pb-Pb collisions

Mass spectra after background subtraction in several centrality bins for $2 < p_{\tau} < 7$ GeV/c

Fit up to $M_{\rm m} = 2 \text{ GeV}/c^2$

dN/d $M_{\mu\mu}$ (dimuons per 50 MeV/ c^2)

1500

1000

500

0

13/07/2017

ALI-PREL-121305

→µµ′

0.5

1

Ingredients of the fit: dimuon decays of light resonances and semi-leptonic decays of open heavy flavours

Free parameters in the hadronic cocktail: η, ω, ϕ and open charm normalizations

Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Centrality range: 40-50%

2.5 < y < 4

 $2 < p_{\tau} < 7 \text{ GeV}/c$

ALICE Preliminary

1.5

 $M_{\mu\mu}$ (GeV/ c^2)

2

Alessandro De Falco

Università/INFN Cagliari

12

ϕp_{T} spectrum integrated over centrality

At 2.76 TeV, p_T spectra limited to the range 2 < p_T < 5 GeV/*c* Fitted with an exponential function $\frac{dN}{dp_T} \propto p_T e^{-m_T/T}$

At 5.02 TeV: better statistics allows a larger p_{T} range: $2 < p_{T} < 7$ GeV/*c* Power-law function $\frac{dN}{dp_{T}} \propto \frac{p_{T}}{[1+(p_{T}/p_{0})^{2}]^{n}}$ needed to fit the high- p_{T} tails

Evolution of the p_{T} spectrum with the collision centrality

♦Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV: power law function fits well all centralities

 \mathbf{P}_{T} distributions of peripheral collisions have a harder tail than the central ones

Similar behavior observed by PHENIX in Au-Au and Cu-Cu collisions at $\sqrt{s_{NN}} = 200$ GeV (Levy-Tsallis fits) and by ALICE in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (blast _____ wave fits) 13/07/2017 Alessandro De Falco

 $\phi R_{AA} vs N_{PART}$

- $R_{AA} \sim 1$ in peripheral collisions
- Small decrease from semiperipheral to (semi)central collisions in the intermediate $p_{\rm T}$ region

13/07/2017

Alessandro De Falco Univer

Università/INFN Cagliari

- Clear decrease for p_{τ} >4 GeV/c in central collisions. Onset of the hard- p_{τ} regime
- Effect less pronounced for semi-peripheral collisions
- Results similar to measurements at RHIC
 13/07/2017 Alessandro De Falco Università/INFN Cagliari

Summary

pp collisions:

- Phojet best describes ϕ production at all energies

Pb-Pb collisions:

- Signal extracted in 9 centrality classes, for $2 < p_T < 7$ GeV/c
- R_{AA} at intermediate p_{T} shows a small decrease as a function of N_{PART}
- Dependence on p_{T}
 - p_{T} spectra well described by a power-law function
 - Tails in p_{T} distributions harder in peripheral collisions wrt central
 - R_{AA} vs p_T decreases to less than 0.5 for p_T >4 GeV/c in central collisions
 - Decrease at high $p_{\rm T}$ less pronounced for semicentral, semiperipheral collisions
 - Qualitative agreement with results at RHIC

13/07/2017

Alessandro De Falco

Università/INFN Cagliari

R_{AA} vs p_T in several centrality bins

Università/INFN Cagliari

ϕR_{AA} at forward and mid-rapidity

