ϕ Meson Measurements at RHIC with the PHENIX Detector

Murad Sarsour (for the PHENIX Collaboration) Georgia State University

Thursday, July 13, 2017

17th International Conference on Strangeness in Quark Matter

Why Is This Work Interesting?

Characterize the properties of the QGP

- ➤ Great successes using heavy quarks (charm and beauty) and jets, together with theoretical studies based on perturbative quantum chromodynamics (QCD)
- ➤ However, huge uncertainties still remain in understanding the soft particle production given the limited theoretical guidance (i.e. non-perturbative QCD regime). More data is needed in order to constrain phenomenological models.
- > Strange hadrons as a probe! (Proposed decades ago, PRL 48, 1066 (1982))

Focusing on the ϕ Meson

- ☐ In Au+Au collisions: an excellent probe for studying QGP sensitive to several aspects of the collision, including modifications of strangeness production in bulk matter.
- □ In small systems (e.g. *p*+Al, *p*+Au, *d*+Au, ³He+Au): Understand cold nuclear matter effects in order to disentangle hot nuclear (QGP related) and cold nuclear matter (Modification of the production cross section in a nuclear target) effects exiting in A+B collisions.
- The lepton decay channel is of particular interest because of the absence of strong interactions between muons and the surrounding hot hadronic matter.
- The rapidity dependence of ϕ production in asymmetric heavy-ion collisions (Cu+Au collisions) provides the means of accessing different mixtures of initial & final state effects

The PHENIX Detector

PHENIX: optimized to measure leptons: rapidity coverage: 1.2<|y|<2.2 & |y|<0.35

high rate capability with emphasis on mass resolution & particle ID

ϕ Meson Production in p+p Collisions

- Very important for validating the phenomenological models of strangeness production.
- Provide baseline measurement for studying nuclear modification of ϕ production in p+Al, p+Au, d+Au, Cu+Cu, Cu+Au and Au+Au collisions at RHIC.

Nuclear Modification Factor, R_{AB}

Modification of the production cross section in a nuclear target (cold) and QGP related (hot). Generally, depends on rapidity, p_T , and mass of the probe.

 $R_{AB} = \frac{d^2N_{AB}/dydp_T}{\langle N_{coll}\rangle \times d^2N_{pp}/dydp_T}$

where $d^2N_{AB}/dydp_T$ is the perevent yield of particle production in A+B collisions and $d^2N_{pp}/dydp_T$ is the perevent yield of the same process in p+p collisions. Scaled by the number of nucleon-nucleon collisions in the A+B system, N_{coll} .

R_{AB} of ϕ Meson in d+A, Cu+Cu and Au+Au Collisions in Central Rapidity

The ϕ meson exhibits a different suppression pattern compared to lighter mesons $(\pi^o$ and $\eta)$ and baryons (protons and antiprotons) in heavy ion collisions. For all centralities, the ϕ meson is less suppressed than π^o and η in the intermediate p_T range (2–5 GeV/c), whereas, at higher p_T , ϕ , π^o , and η show similar suppression values.

$\operatorname{CNM}_{\operatorname{Phys.\,Rev.\,C}}$ for ϕ Meson / d+Au Collision

In Forward & Backward Rapidities

- ➤ An **enhancement** (**suppression**) has been observed at **backward** (**forward**) rapidity region in most central *d*+Au collision.
- The observed enhancement at backward rapidity is a typical behavior of a Cronin effect.

Other ϕ Measurements

❖ The R_{dAu} enhancement (suppression) in the Au-going (d-going) direction is consistent with what is observed by the ALICE collaboration at $\sqrt{s_{NN}}$ = 5.02 TeV in p+Pb collisions

ϕ Meson vs Open & Closed Heavy Flavor

- \diamond Similar nuclear modifications to those in ϕ production as a function of rapidity is observed in heavy flavor decay leptons and inclusive charged hadrons production
- Similar cold nuclear matter effects
- \triangleright Different processes act on open HF and ϕ . The match May be a coincidence!

ϕ Meson R_{CuAu}

 ϕ meson production is enhanced over all centralities in the Au-going direction, while a suppression is observed for the most central collisions in the Cu-going direction

ϕ Meson Production in Cu+Au Collisions

- o Integrated over all centralities, ϕ in Cu+Au is consistent with ϕ in d+Au not with J/ψ in Cu+Au
- \circ May suggest that $J/\psi \& \phi$ mesons follow different production mechanisms

Energy Dependent ϕ Production in p+p Collisions

- * Strangeness (ϕ meson) production cross section increases as a function of energy: from RHIC (PHENIX) to LHC (ALICE & LHCb).
- \triangleright Extensive comparisons with Model calculations of strangeness (ϕ meson) production available in the market have been done! These models exhibit the same trends as data from RHIC to LHC energies.

ϕ Meson Production in Small Systems

- PHENIX collected the 3 He+Au $_{2.5}^{3}$ following data sets: 3 He+Au (2014) & p+Al and p+Au (2015) in addition to published d+Au (2008) results 6 PRC 92, 044909 (2015) p+Au $_{2.5}^{3}$
- At forward (observe suppression) / backward rapidity (enhancemnet)
- Wide range in p_T

Using Small Systems to Study CNM

 \square dN/dy in *d*+Au collision.

□ Variety of small systems: p+Al, p+Au, d+Au and ${}^{3}He+Au$.

❖ Using these data sets allow to discriminate the various cold nuclear matter effects included in models like AMPT and EPOS.

Summary

- The PHENIX collaboration measured ϕ production in p+p, p+Al, p+Au, d+Au, Cu+Cu, Cu+Au and Au+Au collisions with a wide rapidity coverage to study CNM & HNM effects.
- o The particle-dependent nuclear modifications in all colliding systems will provide stringent tests of theoretical model predictions.
- \circ The ϕ meson cross section exhibits increase from RHIC to LHC energies.
- O The data sets (3 He+Au, p+Au and p+Al) collected in 2014 & 2015 allowed φ measurements at backward and forward rapidities along with other probes in less complicated p+Au & p+Al collisions \Rightarrow allow studying the different CNM effects on φ production using models like AMPT and EPOS.