Strange hadron production in pp, pPb, and PbPb collisions at LHC energies

Hong Ni Vanderbilt University for the CMS Collaboration

VANDERBILT UNIVERSITY

Strangeness in Quark Matter, Utrecht 13th July, 2017

"Ridge"

Strange particle v₂

PLB 742 (2015) 200

CMS strange particle v₂ in high multiplicity pPb shows mass effect for p_T <2GeV: $v_2(h^{+/-}) > v_2(K_S) > v_2(\Lambda)$

What other measurements can be used to see the mass effect, if ridge in small system is due to radial flow?

Ridge: radial flow?

If the ridge is due to collective flow, then radial flow must be present \rightarrow flattened spectra \rightarrow dependence on the mass of hadrons

Can we see flattened spectra with the measurement of identified strange particle spectra?

CGC or Hydro?

PLB 728 (2014) 662

With the large acceptance of CMS detector, what will we see in our result?

Data sample

pp

- Data set: 2010 7 TeV
- Event Selection:
 Minimum bias trigger
 High multiplicity triggers

pPb

- Data set: 2013 5.02 TeV
- Event Selection: Minimum bias trigger High multiplicity triggers
- PbPb (50-100% Centrality)
 - Data set: 2011 2.76 TeV
 - Event Selection:
 - Minimum bias trigger

Track multiplicity distribution for different triggers in pPb

V_0 and $\Xi (\Xi^- + \Xi^+)$ Reconstruction

- **Decay Channel:**
- K_s→π⁺ π⁻ Λ⁰→π⁻ p

 $\Xi^{-} \rightarrow \Lambda^0 \pi^{-}$

V⁰

V⁰s are reconstructed via combining a pair of oppositely charged tracks

 Ξ^{-} candidates are reconstructed via combining Λ^{0} candidate with an additional charged track with the proper sign

Candidates Selection: For V⁰s

- Decay length significance
- Cos(pointing angle)
- V⁰ momentum direction Primary Vertex Pointing Angle Connect PV and V⁰ Vertex V⁰ Vertex
- 2D impact parameter significance of daughter tracks wrt PV
- For ∃⁻ Candidates
- 3D impact parameter significance of daughter tracks wrt PV
- 3D separation significance between Ξ^- or Λ^0 vertex wrt PV
- 3D impact parameter significance of Ξ^- candidate wrt PV

Invariant Mass Peaks

- Signal Function: Double Gaussian(with a common mean)
- Background Function:
 - quadratic function for K_s
 - > Aq^{3/2}+Bq^{1/2} for Λ , where q = m (M_p + M_π)
 - > Aq^B for Ξ , where q = m (M_A + M_π)

Yield Extraction

- 1. Implement Signal Fitting Function
- 2. Obtain signal counts and statistical error from fitting parameters

Signal Counts * PDF

Mid-rapidity Spectra

Hong Ni

Mid-rapidity Spectra

Λ / K_s Ratio

- For all multiplicity classes
 - \succ Λ/K_s ratio reaches a maximum and then declines at higher p_T
 - > Location of the maximum in p_T increases with multiplicity
- At low p_T region
 - > In each system, at a given p_T , Λ / K_s ratio is smaller in higher multiplicity events
 - Difference between high and low multiplicity events is larger for smaller system

Ξ / Λ Ratio

- For all multiplicity classes
 - \succ Ξ / Λ ratio increases with p_T and then reaches a plateau at around 3 GeV

At low p_T region

Don't expect a large difference between high and low multiplicity events, because of small mass difference

<KE_T> versus Multiplicity

$$KE_T = m_T - m_0 = \sqrt{(p_T^2 + m_0^2) - m_0}$$

- At the lowest multiplicity bin, <KE_T> for all particles are similar (m_T scaling)
- For all particles, <KE_T> increases as multiplicity increases
- For each system, <KE_T> of heavier particle species increases faster with multiplicity
 - > In PbPb collisions, m_{T} -scaling breaking is the effect of radial flow.
- At similar multiplicities, larger separation for pp / pPb than PbPb

Simultaneous Blast Wave Fit

Simultaneous fit for K_s and Λ

T_{kin}

kinetic freeze-out temperature $<\beta_T>$: average radial flow velocity

Simultaneous Blast-wave model assumes:

- common T_{kin}
- common <β_T>
 for all particle species

• Meaning of T_{kin} and $<\beta_T>$ are model-dependent

Provide a qualitative comparison of the spectra shape among three systems

Larger radial flow velocity for smaller system

pPb Spectra in Different Rapidity Range

Λ / K_{s} Ratio in Pb-going Side versus p-going Side

Comparing Λ / K_s ratio in Pb-going side and p-going side:

- For low multiplicity events, two ratios mostly overlap within systematic uncertainties
- For high multiplicity events, ratio in Pb-going side is larger at higher p_T

<KE_T> versus y_{cm}

Comparing $\langle KE_T \rangle$ in Pb-going side and p-going side:

- Asymmetry develops as event multiplicity increases(Pb-going side larger)
- Trend of asymmetry is more evident for heavier particle species

The trend of data is similar as hydrodynamic model predicted.

Summary

- K_s , Λ , and Ξ spectra are measured in three systems with high precision
- At similar multiplicities, particle ratios at low p_T show a larger difference between high- and low-multiplicity events in smaller system
- At similar multiplicities, "m_T-scaling" breaking is more significant for smaller system
- <KE_T> asymmetry develops as multiplicity increases, with a larger value at Pb-going side, especially for heavier particles

Thank you!

Extra Slides

CMS Detector

Hong Ni

Blast Wave Fit Quality

- Fit quality is good at high multiplicity events
- Fit quality is not so good at low multiplicity events (No "radial" flow effect)

Fitting Range: $K_s(0.1 \text{ to } 1.5 \text{ GeV/c}), \Lambda(0.6 \text{ to } 3 \text{ GeV/c})$

