

Quarkonium measurements with the STAR experiment

Xinjie Huang (Tsinghua University) on behalf of the STAR Collaboration

Heavy quarkonia in QGP

• Dissociation: quarkonia dissociate in QGP due to color-screening \rightarrow Proposed as a direct proof of QGP formation

T. Matsui and H. Satz, PLB 178 (1986) 416

- Sequential melting: different quarkonia dissociate at different temperatures \rightarrow QGP thermometer
- Other effects add additional complications - Cold nuclear matter (CNM) effects \rightarrow Measurements in p+A - Regeneration \rightarrow Elliptic flow (v_{2}) measurements - Co-mover absorption
	- \rightarrow Y is a cleaner probe
	- Feed down

A. Mocsy, EPJ C61 (2009) 705

The Solenoid Tracker At RHIC

Mid-rapidity detector: $|\eta| < 1$, $0 < \phi < 2\pi$

- TPC: Measure momentum and energy loss
- TOF: Measure time-offlight
- **BEMC: Trigger on** and identify high p_T electrons
- MTD: Identify and trigger on muons
	- $-$ |η| < 0.5, φ ~ 45%
	- Less bremsstrahlung compared to electrons

p+p: inclusive J/ ψ and ψ (2S)/J/ ψ ratio

- Inclusive J/ψ cross-section measured in $0 < p_T < 14$ GeV/c
	- CGC+NRQCD and NLO NRQCD (prompt) agree with data - Improved CEM model (direct) is below data in $3.5 < p_T < 12$ GeV/c
- Measured ψ(2S)*/*J/ψ ratio in p+p 200 GeV is consistent with world-wide data

Inclusive J/ψ R_{pAu}

- First J/ ψ R_{pAu} measurement at RHIC
- R_{pAu} is less than unity at low p_T , and consistent with unity within uncertainties at high p_{T}

Inclusive J/ ψ R_{pAu} vs. R_{dAu} vs. model

- R_{pAu} vs. R_{dAu} : Consistent within uncertainties, but there seems to be a tension at $3.5 < p_T < 5$ GeV/c (1.4 σ)
- Data vs. model: Data favor the model calculation with additional nuclear absorption effect on top of the nuclear PDF effect

$\psi(2S)/J/\psi$ double ratio

PHENIX p+Au, PRC(2017) 034904 PHENIX d+Au, PRL111 (2013) 202301 *Co-mover calculation, Ferreiro, private comm.*

• First mid-rapidity *ψ*(2S) to *J/ψ* double ratio measurement in p+Au to p+p collisions at RHIC, $[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{\text{pAu}}/[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{\text{pp}} =$

 1.37 ± 0.42 (stat.) \pm 0.19(syst.)

- First measurement of $J/\psi v_2$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV - U+U result is consistent with Au+Au result within uncertainties
- J/ψ v_2 is consistent with zero within uncertainties above 2 GeV/c -> Disfavor the scenario that the regeneration is the dominant contribution in this kinematic range

 J/ψ suppression: R_{AA} vs. centrality

Strong suppression of J/ψ above 5 GeV/c in central collisions \rightarrow Dissociation in effect

Υ results in p+p and p+Au collisions

- $p+p: \sigma = 81 \pm 5$ (stat.) \pm 8(syst.) pb
	- Baseline for A+A collisions with improved precision
	- Consistent with the Color Evaporation Model (CEM) prediction
- p+Au: R_{pAu} = 0.82 \pm 0.10(stat.) $_{+0.08}^{+0.07}$ (syst.) \pm 0.10(global)
	- Quantify CNM effects

K.J.Eskola,et.al,JHEP 0904 (2009) 065

R_{AA} vs. N_{part} at RHIC

- Di-muon result from 2014 data and di-electron result from 2011 data are combined
- Indication of more suppression with increasing centrality
- $Y(2S+3S)$ is more suppressed than $Y(1S)$ in central collision \rightarrow Sequential melting

Compare RHIC with LHC

CMS Collaboration, arXiv:1611.01510

- Y(1S): Consistent with CMS result.
- Y(2S+3S) : Indication of less suppression at RHIC than at LHC

R_{AA} vs. p_T at RHIC

• $Y(1S)$: No obvious dependence on p_T ; consistent with CMS result.

 $Y(2S+3S)$: Indication of less suppression at RHIC at high p_T

Compare with models

- SBS (Strongly Binding Scenario): Fast dissociation —potential based on internal energy
- WBS (Weakly Binding Scenario): Slow dissociation —potential based on free energy
- Strickland, Bazov: No CNM; no regeneration NPA 879 (2012) 25
- Liu, Chen, Xu, Zhuang : Dissociation only for excited states; suppression of ground state due to feed -down; SBS *PLB 697 (2011) 32*
- Emerick, Zhao, Rapp: Includes CNM; SBS case *EPJ A48 (2012) 72*
- \rightarrow Data seem to favor the SBS models

Summary and Outlook

• **p+p**

- Models describe the quarkonium production cross-section reasonably well - Baseline with improved precision for Υ

• **p+Au**

 $-$ J/ ψ R_{pAu} measurement \rightarrow Additional suppression mechanisms seem to be favored by data, but nPDF effects only cannot be fully ruled out yet - Quantify CNM effects for Υ,

 $R_{\sf pAu}$ = 0.82 \pm 0.10(stat.) $^{\rm +0.07}_{\rm +0.08}$ (syst.) \pm 0.10(global)

• **A+A**

- J/ψ v_2 in U+U collisions: Consistent with zero above 2 GeV/c within uncertainties as for Au+Au collisions \rightarrow Small regeneration contribution

- Strong high- $p_{\text{\tiny T}} J/\psi$ suppression in central Au+Au collisions
- \rightarrow Dissociation in effect
- $Y(2S+3S)$ is more suppressed than $Y(1S)$ in central Au+Au collisions at RHIC
- \rightarrow Sequential melting

- RHIC vs. LHC

Υ(1S): Consistent results

Υ(2S+3S): Hint of less suppression at RHIC than at LHC

• **Outlook:** Analyses from 2x Au+Au data are underway

Back up

V_2 measurment in U+U collisions
Event Plane Method: J/w Yield vs. ϕ -Y

Event plane method: fit J/ψ yield as the function of the relative angle between J/ψ (φ) and the event plane (Ψ) by the function

$$
N\cdot(1+2\cdot\nu_{2,obs}\cdot\cos(2\cdot(\varphi-\Psi)))
$$

• Invariant mass method: fit $v_{\text{\tiny 2}}$ vs. m by

$$
\frac{v_2^{J/\psi} \cdot \text{Sig(m)} + (a_0 + a_1 \cdot m) \cdot Bg(m)}{(\text{Sig(m)} + Bg(m))}
$$

Where $Sig(m)/Bg(m)$ is the unlike-sign/like-sign yield

Υ signal in Au+Au collisions

$\Upsilon \rightarrow e^+e^ \gamma \rightarrow \mu^+\mu^-$, 2014 data "
၁ 350
ပ $=$ vents / (0.2) 60 Unlike Sign - Like Sign STAR Au+Au 200 GeV \bullet -Unlike-sign pairs (UL) Au+Au @ 200 GeV L ~ 14.2 nb⁻¹ $Y(1S+2S+3S)+BB+DY$ \div Like-sign pairs (LS) χ^2 /ndf 22.38/17 $L \sim 1.1$ nb⁻¹ $-$ Y(1S): 96 ± 16 $-$ Combined Fit 50 $\Upsilon(1S)$ Yield 156.7 ± 23.5 $-$ Y(2S+3S): 17 ± 13 cent. 0-60% $-Fit$ to LS 300 $\Upsilon(2S+3S)/\Upsilon(1S)$ 0.375 ± 0.132Fit to $\Upsilon(1S)$ - $Y(1S+2S+3S)$: 114 ± 22 40 Fit to $\Upsilon(2S)$ $-BB+DY$ 250 $-Fit$ to $\Upsilon(3S)$ 30 200 **STAR Preliminary** 20 150 10 100 **STAR** preliminary 50 Ω $0_{\mathbf{R}}^{\mathbf{L}}$ 8 8.5 12.5 9.5 10 10.5 11.5 12 13 8.5 9.5 11 9 10 10.5 11 11.5 12 M_{ee} (GeV/ c^2) M_{uu} (GeV/c²)

- Background sources:
	- Combinatorial background (estimated with $N_{l^+l^+} + N_{l^-l^-}$)
	- $h\overline{h}$ and Drell-Yan contributions

Υ nuclear modification factor in Au+Au collisions

 σ_{pp}^{inel} d²N_{AA}/dydp_T N_{coll}) $d^2 \sigma_{pp}/dydp_T$

- ☆ are combinations of ★ results
- Di-muon and di-electron results consistent with each other \rightarrow Results combined for higher statistical precision