

Quarkonium measurements with the STAR experiment

Xinjie Huang (Tsinghua University) on behalf of the STAR Collaboration

Universiteit Utrecht 10-15 July 2017

Utrecht, the Netherlands

Heavy quarkonia in QGP

Dissociation: quarkonia dissociate in QGP due to color-screening
 → Proposed as a direct proof of QGP formation

T. Matsui and H. Satz, PLB 178 (1986) 416

- Sequential melting: different quarkonia dissociate at different temperatures
 → QGP thermometer
- Other effects add additional complications

 Cold nuclear matter (CNM) effects
 → Measurements in p+A
 Regeneration → Elliptic flow (v₂) measurements
 Co-mover absorption
 - \rightarrow Y is a cleaner probe
 - Feed down

A. Mocsy, EPJ C61 (2009) 705

The Solenoid Tracker At RHIC

Mid-rapidity detector: $|\eta| < 1$, $0 < \varphi < 2\pi$

- TPC: Measure momentum and energy loss
- TOF: Measure time-offlight
- BEMC: Trigger on and identify high p_T electrons
- MTD: Identify and trigger on muons
 - |η| < 0.5, φ ~ 45%
 - Less bremsstrahlung compared to electrons

p+p: inclusive J/ ψ and ψ (2S)/J/ ψ ratio

- Inclusive J/ ψ cross-section measured in 0 < p_T < 14 GeV/c
 - CGC+NRQCD and NLO NRQCD (prompt) agree with data
 - Improved CEM model (direct) is below data in $3.5 < p_T < 12$ GeV/c
- Measured $\psi(2S)/J/\psi$ ratio in p+p 200 GeV is consistent with world-wide data

Inclusive J/ ψ R_{pAu}

- First J/ ψ R_{pAu} measurement at RHIC
- R_{pAu} is less than unity at low p_T , and consistent with unity within uncertainties at high p_T

Inclusive J/ ψ R_{pAu} vs. R_{dAu} vs. model

- R_{pAu} vs. R_{dAu} : Consistent within uncertainties, but there seems to be a tension at 3.5 < p_T < 5 GeV/c (1.4 σ)
- Data vs. model: Data favor the model calculation with additional nuclear absorption effect on top of the nuclear PDF effect

$\psi(2S)/J/\psi$ double ratio

PHENIX p+Au, PRC (2017) 034904 PHENIX d+Au, PRL111 (2013) 202301 Co-mover calculation, Ferreiro, private comm.

• First mid-rapidity $\psi(2S)$ to J/ψ double ratio measurement in p+Au to p+p collisions at RHIC, $[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pAu}/[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pp} =$

1.37 \pm 0.42(stat.) \pm 0.19(syst.)

- First measurement of $J/\psi v_2$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV - U+U result is consistent with Au+Au result within uncertainties
- J/ψ v₂ is consistent with zero within uncertainties above 2 GeV/c
 -> Disfavor the scenario that the regeneration is the dominant contribution in this kinematic range

 J/ψ suppression: $R_{\Delta\Delta}$ vs. centrality

• Strong suppression of J/ψ above 5 GeV/c in central collisions \rightarrow Dissociation in effect

Υ results in p+p and p+Au collisions

- p+p: σ = 81 \pm 5(stat.) \pm 8(syst.) pb
 - Baseline for A+A collisions with improved precision
 - Consistent with the Color Evaporation Model (CEM) prediction
- p+Au: $R_{pAu} = 0.82 \pm 0.10$ (stat.) $^{-0.07}_{+0.08}$ (syst.) ± 0.10 (global)
 - Quantify CNM effects

K. J. Eskola, et. al, JHEP 0904 (2009) 065

R_{AA} vs. N_{part} at RHIC

- Di-muon result from 2014 data and di-electron result from 2011 data are combined
- Indication of more suppression with increasing centrality
- $\Upsilon(2S+3S)$ is more suppressed than $\Upsilon(1S)$ in central collision \rightarrow Sequential melting

Compare RHIC with LHC

- Y(1S) : Consistent with CMS result.
- $\Upsilon(2S+3S)$: Indication of less suppression at RHIC than at LHC

$R_{AA} \, \text{vs.} \, p_T \, \text{at} \, \text{RHIC}$

• $\Upsilon(1S)$: No obvious dependence on p_T ; consistent with CMS result.

• $\Upsilon(2S+3S)$: Indication of less suppression at RHIC at high p_T

Compare with models

- SBS (Strongly Binding Scenario): Fast dissociation—potential based on internal energy
- WBS (Weakly Binding Scenario): Slow dissociation—potential based on free energy
- Strickland, Bazov: NPA 879 (2012) 25 No CNM; no regeneration
- Liu, Chen, Xu, Zhuang: PLB 697 (2011) 32
 Dissociation only for excited states; suppression of ground state due to feed-down; SBS
- Emerick, Zhao, Rapp: EPJ A48 (2012) 72
 Includes CNM; SBS case
- \rightarrow Data seem to favor the SBS models

Summary and Outlook

• p+p

- Models describe the quarkonium production cross-section reasonably well - Baseline with improved precision for Υ

• p+Au

- J/ ψ R_{pAu} measurement \rightarrow Additional suppression mechanisms seem to be favored by data, but nPDF effects only cannot be fully ruled out yet - Quantify CNM effects for Υ ,

 $R_{\rm pAu} = 0.82 \pm 0.10$ (stat.) $^{-0.07}_{+0.08}$ (syst.) ± 0.10 (global)

• A+A

- $J/\psi v_2$ in U+U collisions: Consistent with zero above 2 GeV/c within uncertainties as for Au+Au collisions \rightarrow Small regeneration contribution

- Strong high-p_T J/ψ suppression in central Au+Au collisions
- \rightarrow Dissociation in effect
- $\Upsilon(2S+3S)$ is more suppressed than $\Upsilon(1S)$ in central Au+Au collisions at RHIC
- \rightarrow Sequential melting

- RHIC vs. LHC

 $\Upsilon(1S)$: Consistent results

 $\Upsilon(2S+3S)$: Hint of less suppression at RHIC than at LHC

• Outlook: Analyses from 2x Au+Au data are underway

Back up

v_2 measurment in U+U collisions

 Event plane method: fit J/ψ yield as the function of the relative angle between J/ψ (φ) and the event plane (Ψ) by the function

 $N \cdot (1 + 2 \cdot v_{2,obs} \cdot \cos(2 \cdot (\phi - \Psi)))$

Invariant mass method:
 fit v₂ vs. m by

$$\frac{v_2^{J/\psi} \cdot \operatorname{Sig}(m) + (a_0 + a_1 \cdot m) \cdot Bg(m)}{(\operatorname{Sig}(m) + Bg(m))}$$

Where Sig(m)/Bg(m) is the unlike-sign/like-sign yield

Y signal in Au+Au collisions

$\Upsilon \rightarrow e^+e^-$, 2011 data $\Upsilon \rightarrow \mu^+ \mu^-$, 2014 data Counts 320 Events / (0.2) 60 Unlike Sign - Like Sign STAR Au+Au 200 GeV - Unlike-sign pairs (UL) Au+Au @ 200 GeV L ~ 14.2 nb⁻¹ r(1S+2S+3S)+BB+DY +Like-sign pairs (LS) χ^2/ndf 22.38/17 L ~ 1.1 nb⁻¹ -Combined Fit 11(1S) Yield 50 156.7 ± 23.5 - Y(2S+3S): 17 ± 13 -Fit to LS cent. 0-60% 300 Y(2S+3S)/Y(1S) 0.375 ± 0.132 --- Fit to $\Upsilon(1S)$ - Y(1S+2S+3S): 114 ± 22 40 --- Fit to $\Upsilon(2S)$ BB+DY 250 Fit to $\Upsilon(3S)$ 30 200 **STAR Preliminary** 20 150 10 100 **STAR preliminary** 50 0 0,L 8 8.5 9.5 12 12.5 13 8.5 9.5 10 10.5 11 11.5 9 10 10.5 11 11.5 12 Mee (GeV/c²) $M_{\mu\mu}(GeV/c^2)$

- Background sources:
 - Combinatorial background (estimated with $N_{l+l+} + N_{l-l-}$)
 - $b\overline{b}$ and Drell-Yan contributions

Υ nuclear modification factor in Au+Au collisions

 $R_{AA} = \frac{\sigma_{pp}^{inel} \ d^2 N_{AA} / dy dp_T}{\langle N_{coll} \rangle \ d^2 \sigma_{pp} / dy dp_T}$

- ☆ are combinations of ★ results
- Di-muon and di-electron results consistent with each other → Results combined for higher statistical precision