

Measurement of heavy-flavour production, correlations and jets with ALICE

Shingo Sakai (Univ. of Tsukuba) for the ALICE collaboration

Heavy quarks in heavy-ion collisions

- ▶ Heavy flavour (c & b) production in heavy-ion collisions
 - Created in initial parton-parton scattering
 - ▶ Traverse and interact with the hot & dense QCD matter (QGP)
 - Ideal probe to investigate properties of QGP

- Nuclear modification factor
 - Sensitive to energy loss of heavy quarks via radiative [1] and collisional [2] processes
 - Mass/color dependent energy loss : ΔE (c)> ΔE (b)
- Azimuthal anisotropy (v_2)
 - Collective effects, thermalisation, hadronisation with/without coalescense at low p_T
 - Path-length dependence of energy loss at high p_T
- Jets & azimuthal correlations with charged particles
 - Investigate spatial redistribution of energy loss
 - Address heavy-flavour jet properties and their possible modification in the presence of QGP

[1] PLB632, 81

[2] PLB649, 139

Heavy-flavour signals in ALICE

- D mesons, |y|<0.5
 - Direct reconstruction via displaced vertex topology

F. Grosa, HF parallel 2 (Thur. 11:30)

- \blacksquare Heavy-flavour jets (|y| < 0.5)
 - Tagged with D mesons in reconstructed jets (via FastJet, anti-k_T)

- background from Dalitz decay
 of neutral mesons and γ conversions
 are subtracted via invariant mass
 of ee pairs
- Electrons from charm and beauty are separated by using impact parameter

- Muons from heavy-flavour hadron decays (μ^{HF}), 2.5<y<4
 - background from π, K is estimated via simulations tuned with measured spectrum of backgrounds sources

Results of e^{HF} & μ^{HF} in Pb-Pb collisions alice

R_{AA} of e^{HF} in Pb-Pb at 5.02 TeV

- Strong suppression of e^{HF} observed in Pb-Pb at 5.02 TeV at mid-rapidity
 - Not observed such suppression in p-Pb collisions at 5.02 TeV up to 20 GeV/c
 - The suppression is due to final-state effects, i.e. energy loss of heavy flavour
- High p_T e^{HF} is mainly from beauty ($p_T > 5$ GeV/c)
 - Indicates a significant energy loss of beauty in the hot & dense matter
- Similar R_{AA} of e^{HF} at 2.76 TeV and 5.02 TeV

R_{AA} of μ^{HF} in Pb-Pb at 5.02 TeV

- \blacksquare Strong suppression of μ^{HF} observed in Pb-Pb at 5.02 TeV at forward-rapidity
 - Similar suppression of e^{HF} at mid-rapidity and μ^{HF} at forward-rapidity
 - Muons from beauty dominate at high p_T
- The suppression gets larger from peripheral to central collisions

Beauty decay electron R_{AA}

ALICE:arXiv:1609.03898

- Smaller energy loss expected for beauty than for charm due to dead cone effect [1]
- Hint of smaller suppression for electrons from beauty than electrons from charm

[1] PLB519 (2001) 199

v₂ of e^{HF} & μ^{HF} in Pb-Pb collisions

- A positive v_2 of e^{HF} is observed in mid-central (20-40%) Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \, \text{TeV}$
- \blacksquare v₂ tends to increase from most- to mid-central collisions
- Indicates that charm quarks participate to collective motion of the system
- Similar magnitude of v_2 of μ^{HF} observed at forward rapidity
 - No dependence on rapidity is observed within uncertainties

v₂ of e^{HF} & μ^{HF} in Pb-Pb collisions

- A positive v_2 of e^{HF} is observed in mid-central (20-40%) Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV
- \blacksquare The centrality dependence of v_2 tends to increase from most- to mid-central collisions
- Indicates charm quarks participate to collective motion of the system
- Similar magnitude of v_2 of μ^{HF} observed at forward rapidity
 - No dependence on rapidity is observed within uncertainties
- Similar v_2 measured at $\sqrt{s_{NN}} = 2.76$ TeV and 5.02 TeV

Model comparisons

Theoretical calculations

- pQCD-based energy loss models
 - Djordjevic: PRC 92 (2015) 024918
 - CUJET 3.0; PL 32 (2015) 092501
 - Vitev: PLB 649 (2007) 139
 - MC@sHQ+EPOS: PRC 89 (2014) 014905
- Transport models
 - BAMPS: JPG 42 (2015) 11
 - TAMU: PLB 735 (2014) 445
 - PHSD: PRC 93 (2016) 034906
 - POWLANG: EPJ C 75 (2015) 121
- Models predict the large suppression of e^{HF} & μ^{HF}
- Positive v₂ expected by models

Results of heavy-flavour jets & correlation

Charm jets in pp collisions at 7 TeV

- Extend measurement of charm production from D⁰ to D⁰ in jets to study charm jets production
 - Use fully reconstructed D⁰->K π decays to tag jets with charm
- Address charm jets production in pp at low p_T ($p_T > 5 \text{ GeV}/c$)
 - Charm jets production is described by pQCD (POWHEG+PYTHIA)

HF correlation (D-h) in p-Pb

New result

- Address charm jet properties and their possible modification due to initial or final state effects in p-Pb due to
 - Possible flow (v_2) for charm
 - Modification of fragmentation function
 - Suppression of away-side yields (recoil jets) due to energy loss
- <u>Run2</u> measurement improves significantly the precision of run1 data
 - EPCJ 77 245 (2017)
- Correlation function for D-h in p-Pb is described by PYTHIA and POWHEG + PYTHIA within uncertainties (direct comparison with pp in the back up)

see also e^{HF}-h correlation in pPb Poster: H. Zanoil, D. Thomas

HF correlation function (e-h) in Pb-Pb

Poster: D. Thomas

- $\Delta \phi$ (rad) ALI-PREL-134633
 - Azimuthal correlation of eHF and with charged particles in p-Pb and Pb-Pb at 5.02 TeV Near-side: jets containing charm or beauty quarks

 $\Delta \phi$ (rad)

- Hint of enhancement of the yield of low- p_T associated particles in the near-side jet
 - Promising in view of next Pb-Pb runs

Summary

- ALICE has studied heavy flavour production (charm & beauty) with various differential measurements
 - Charm-jet production via D tagged jets in pp collisions is described by a pQCD calculation
 - No modification of azimuthal correlation between D and charged particles in p-Pb collisions (consistent with pQCD based model calculations within uncertainties)
 - A strong suppression of heavy-flavour production is observed for e^{HF} at mid-rapidity and μ^{HF} at forward-rapidity & a positive v_2 of e^{HF} in Pb-Pb at 5.02 TeV
 - Hint of enhancement of associate charged particle from heavy flavours in eHF-h correlation (near-side) in Pb-Pb at 5.02 TeV
 - Heavy flavours strongly interact with hot and dense QCD matter formed in Pb-Pb collisions

Back up

HF correlation (D-h) in pp and p-Pb

HF correlation function (D-h) in pp & p-Pb

New

- Near side yields & jet width (σ) in pp and pPb are consistent within uncertainties
 - No modification of fragmentation function due to cold nuclear matter effect and/or possible energy loss in small system

I_{AA} in Π^0 - h in Pb-Pb at 2.76 TeV

