Recent highlights from STAR

17th International Conference on Strangeness in **Quark Matter**

Universiteit Utrecht

10-15 July 2017 Utrecht, the Netherlands

Outline

STAR detectorsProbes for QGP in Heavy-Ion Collisions

✓Heavy flavor measurements

✓ Bulk observables

✓ Electro-magnetic probes

Summary

STAR detectors

Large acceptance:

- $|\eta| < 1, 0 < \phi < 2\pi$
- Time Projection Chamber (TPC)
 - tracking, particle identification, momentum
- Time of Flight detector (TOF)
 - particle identification
- Barrel ElectroMagnetic Calorimeter (BEMC)
 - electron identification, triggering
- Muon Telescope detector (MTD)
 - muon identification, triggering
- Heavy Flavor Tracker (HFT)
 - track pointing resolution ~50 μm at p_T ~0.8 GeV/c

STAR detector upgrades :

By Flemming Videbaek on Fri. 11:55

Part I

Heavy flavor measurements

Suppression pattern of J/ψ and Υ
Anisotropic flow of D⁰ mesons
D_s and Λ_c production

Bulk observables

Electro-magnetic probes

Why heavy flavor?

Symmetry breaking

STAR

- Higgs mass: electroweak symmetry breaking

→ current quark mass

- QCD mass: chiral symmetry breaking

→ constituent quark mass

- Ideal probe to study QGP
 - Masses are not affected by QCD medium
 - Experiences the whole evolution of QGP

Quarkonia:

- Dissociation vs regeneration
- Sequential melting
- Cold Nuclear Matter (CNM) effects
- Open charm hadrons:
 - Harder to thermalize: probe the dynamics of the QGP
 - Brownian motion approach: heavy quark spatial diffusion coefficient in the QGP, e.g. $2\pi TD_s$

STAR Inclusive J/ψ modification in p+Au

By Xinjie Huang on Fri. 16:25

- R_{pAu} vs. R_{dAu}: Consistent within uncertainties, but there seems to be a tension at 3.5 < p_T < 5 GeV/c (~ 1.4σ).
- Data vs. model: Data favor the model with additional nuclear absorption effect on top of the nuclear PDF effects!

$\psi(2S)/J/\psi$ ratio and double ratio

- ✓ Measured $\psi(2S)/J/\psi$ ratio in p+p 200 GeV is consistent with world-wide data.
- First ψ(2S) to J/ψ double ratio measurement between p+p and p+Au at midrapdity at RHIC:

 1.37 ± 0.42 (stat.) ± 0.19 (syst.).

$J/\psi \; v_2$ in U+U collisions

✓ The first measurement of J/ ψ v₂ in U+U collisions.

✓ Similar to 200 GeV Au+Au results, the value of J/ψ v₂, from minimum biased 193 GeV U+U collisions, are consistent to zero within uncertainties.

Y measurements

✓ Indication of more suppression with increasing centrality.

- $\checkmark \Upsilon$ (2S+3S) is more suppressed than Υ (1S) in central collisions!
- ✓ Comparison with LHC results:
 - $\square \Upsilon(1S)$: Consistent with the CMS measurement!
 - \square Υ (2S+3S) : Hint for less suppression at RHIC than at the LHC.

Comparison with models

- SBS (Strongly Binding Scenario): fast dissociation—potential based on internal energy.
- WBS (Weakly Binding Scenario): slow dissociation—potential based on free energy.
- Strickland, Bazov: No CNM, no regeneration. NPA 879 (2012) 25
- Liu, Chen, Xu, Zhuang: Dissociation only for excited states, suppression of ground state due to feed-down, SBS. PLB 697 (2011) 32
- Emerick, Zhao, Rapp: Includes CNM, SBS case. EPJ A48 (2012) 72
- Data seem to favor the SBS models!

Elliptic and triangular flow of D⁰

By Sooraj Radhakrishnan on Thu. 11:40

✓ Large v₂ and v₃ values, comparable to those of light hadrons!
 ✓ Consistent with the NCQ scaling!
 ✓ Charm quarks flow with the QGP!
 ✓ With 2πTD_s ~ 2-12 (in the range T_c – 2T_c) models results are consistent with data!

D_s enhancement at RHIC

- ✓ Strong enhancement seen for D_s production relative to PYTHIA !
 - → Charm in QGP hadronizes very differently than in vacuum!
- ✓ Enhancement larger than TAMU model with coalescence.
- ✓ Similar enhancement as light flavor for p_T > 3.5 GeV/c, smaller values in 2.5 3.5 GeV/c.

STAR Λ_c production in heavy-ion collisions

- ✓ Significant baryon/meson enhancement in the charm sector!
- Magnitude consistent with that of light hadrons!
- Coalescence models with thermalized charm quarks in medium agree with measurement.

Heavy flavor measurements

Bulk observables

- Anisotropy flow of strange hadrons
- Dipolar flow
- \blacklozenge Global polarization --- Λ and ϕ
- Kaon femtoscopy

Electro-magnetic probes

What do bulk observables tell?

□ Anisotropic flow:

STAR

- Initial-state eccentricity and its fluctuations
- Sensitive to the evolution of the system at early times
- Sensitive to the equation of state
- Extract the transport coefficients of medium

Global polarization:

G Femtoscropy:

 Study the vorticity of the medium and the initial magnetic field

medium at thermal freeze-out

Measure the volume of the

STAR Flow harmonics of v_n strange hadrons

 \checkmark Note: feed-down contributions for Λ are not corrected.

- ✓ Strong centrality dependence observed for v_2 of ϕ , K_s^0 and Λ in both U+U and Au+Au collisions.
- ✓ Both v_3 and v_4 show a weak centrality dependence in U+U collisions.

Energy and centrality dependence of v_1^{even}

By Niseem Magdy on Thu. 11:10

✓ v₁^{even} increases with centrality.
 ✓ v₁^{even} shows weak sensitivity to beam energy change.
 ✓ v₁^{even} shows similar values to v₃ at 0.4 < p_T < 0.7 GeV/c.

STAR Azimuthal angle dependence of P_H

Note : Smearing of the observed EP (Ψ_{obs}) is not corrected yet in $\phi - \Psi_{obs}$

✓ No significant P_H for off-peak lambda candidates (red points).

- \checkmark *P_H* shows a similar azimuthal dependence for Λ and $\overline{\Lambda}$.
- ✓ The significance of ΔP_H , for Λ and $\overline{\Lambda}$ conbined, between $[0, \frac{\pi}{8}]$ and $[\frac{3\pi}{8}, \frac{\pi}{2}]$ is 4.7 σ .

✓ Consistent with the picture of maximum vorticity in the equator.

Energy dependence of $\phi \ \rho_{00}$

- ✓ ρ_{00} is expected to be sensitive to production mechanisms ($\rho_{00} < 1/3$ for recombination, $\rho_{00} >$ 1/3 for fragmentation). J.Phys.G34, S323-330 (2007)
- ✓ Measurement of ϕ -meson spin alignment at 19 62 GeV.
- ρ₀₀ shows weak beam-energy dependence.

STARENERGY dependence of kaon source radii

- ✓ Kaon source radii increase with increasing collision energy.
 - R_{long} increases longer emission duration.
 - R_{side} and R_{out} increases larger system at the moment of the particles emission.
- Similar trends as results from pion femtoscopy.

By Jindřich Lidrych on Thu. 10:50

Heavy flavor measurements

Bulk observables

Electro-magnetic probes

 e^+e^- production at very low p_T

Electromagnetic probes

STAR

- ✓ Observed significant excess w.r.t hadronic sources at p-like mass region (0.3-0.76 GeV/c²).
- Enhancement is consistent with a broadened p spectral function of theory expectation. [R.Rapp, Adv. High Energy phy. 2013 (2013) 148253]

Dielectron – ideal electromagnetic probes

- Suffer no strong interaction, traverse the medium with minimum interaction.
- Produced throughout all stages of the evolution of the system.

Low $p_T e^+e^-$ in Au+Au and U+U

✓ Clear excesses in peripheral collisions both in Au+Au and U+U.
 ✓ Excess observed over the whole mass range (< 4 GeV/c²).

Excess versus model calculation

- Tend to be larger in U+U collisions, but still consistent with each other under the current precision.
- Can not be described by the model based on ρ broadening and QGP thermal radiation!
- Additional source for production!

✓ Does the e⁺e⁻ excess originate from coherent photoproduction?

STARCoherent photon interactions in A+A

Photon-nucleus Interactions in hadronic A+A collisions confirmed!

t distribution

STAR

Wangmei Zha --- SQM 2017

Summary

✓ Heavy flavor measurements:

•New results of $J/\psi R_{pAu}$ in p+Au collisions and v_2 in U+U collisions at RHIC.

• Υ (2S+3S) is more suppressed than Υ (1S) \rightarrow Sequential melting.

♦ New results of D⁰ triangular flow in heavy-ion collisions.

•Significant enhancement of D_s/D^0 and Λ_c/D^0 rations at RHIC.

✓ Bulk observables:

STAR

The anisotropic flow of strange hadrons has been studied and compared between U+U and Au+Au collisions, respectively.

• Charged $|v_1^{even}|$ shows weak dependence on the collision centrality and beam energy.

• The Λ and $\overline{\Lambda}$ global polarization shows azimuthal dependence.

• Kaon femtoscopic radii (R_{out} , R_{side} and R_{long}) increases with collision energy .

✓ Electro-magnetic probes:

•Clear excesses at very low p_T in peripheral collisions both in Au+Au and U+U

 \rightarrow Consistent with the coherent production picture.

STAR STAR presentations in SQM2017

✓ Quarkonium measurements in heavy-ion collisions with the STAR experiment
 — Xinjie Huang on Fri. 16:25

- Measurements of charm hadron production and anisotropic flow in Au+Au collisions at 200 GeV with the STAR experiment at RHIC Sooraj Radhakrishnan on Thu. 11:40
- ✓ Anisotropic flow of strange hadrons in U+U collisions at √s_{NN} = 193 GeV —
 Vipul Bairathi on Thu. 09:40
- ✓ Kaon femtoscopy in Au+Au collisions from the Beam Energy Scan at the STAR experiment — Jindřich Lidrych on Thu. 10:50
- ✓ Beam energy and system dependence of rapidity-even dipolar flow Niseem Magdy on Thu. 11:10
- ✓ ϕ -Meson Spin Alignment and the Azimuthal Angle Dependence of $\Lambda(\overline{\Lambda})$ Polarization in Au+Au collisions at RHIC — **Biao Tu on Fri. 14:35**
- ✓ Coherent e⁺e⁻ production at very low transverse momentum at STAR Chi Yang on Fri. 16:45
- ✓ STAR detector upgrades Flemming Videbaek on Fri. 11:55