News on mean pion multiplicity from NA61/SHINE Michał Naskręt WFiA UWr, for the NA61/SHINE collaboration July 14, 2017 ## The NA61/SHINE detector - Fixed target experiment, - Located at the SPS accelerator, - Large acceptance spectrometer coverage of the full forward hemisphere, down to $p_T = 0$, - Selection of **events based on forward energy** (projectile spectators) measured in PSD. ## Strong interactions programme at NA61/SHINE The NA61/SHINE performs a 2D scan over system size and collision energy to study the phase diagram of strongly interacting matter in temperature and baryon density. ## Strong interactions programme at NA61/SHINE In this talk news on 4π mean π^- multiplicity in $^7\text{Be}+^9\text{Be}$ and $^{40}\text{Ar}+^{45}\text{S}$ collision in 5% most violent collisions will be presented. - Data taking scheduled, - Data taking planned, #### **Event classes** Event (centrality) classes are **chosen using the forward energy**, $E_F \approx$ energy of projectile spectators. E_F is measured by the PSD zero-degree calorimeter. This is a unique feature of the NA61/SHINE. Example for Ar+Sc at 13A GeV/c ## PID methods in NA61/SHINE - dE/dx method estimates multiplicities of π^{\pm} , K^{\pm} , p and \bar{p} using energy loss measurements in TPCs, - tof-dE/dx method estimates multiplicities of π^{\pm} , K^{\pm} , p and \bar{p} using energy loss and particle time of flight measurements in ToFs, - h^- method estimates multiplicities of π^- based on the fact that the majority of negatively charged hadrons produced in p+p and A+A collisions are π^- . #### The h⁻ method The h^- method is used to extract π^- spectra in Ar+Sc and Be+Be interactions at different beam momenta. Results refer to pions produced by strong interaction processes and in electromagnetic decays of produced hadrons. #### The h⁻ method - The experimental data undergoes series of quality cuts. - Spectra of negatively charged particles are detrmined using the selected events and tracks, - The spectra are corrected for acceptance, reconstruction efficiency and contamination of particles other than primary π^- mesons by EPOS 1.99 Monte Carlo model¹. - Mean π^- multiplicities in 4π is estimated by summing up the measured spectra and correcting it for missing acceptance by extrapolation. ¹Liu et al. *PRC* 74 (), p. 044902. ## The h⁻ method Example for 40 Ar $+^{45}$ Sc at 19A GeV/c Corrected π^- spectrum ## Extrapolation to 4π acceptance # Results: π^- rapidity spectra - π^- spectra measured in large acceptance: p_T down to 0, in full forward hemisphere. - Rapidity spectra are approximately gaussian, independently of the collision energy, - Only statistical uncertainties plotted. # Mean number of wounded nucleons $\langle W \rangle$ - Mean number of wounded nucleons (nucleons interacting inelastically calculated within the Glauber model) $\langle W \rangle$ obtained using **EPOS 1.99**² Monte Carlo, - Systematic and statistical uncertainties plotted. Systematic uncertainties are based on the uncertainty of p+p inelastic collision cross section. - The EPOS $\langle W \rangle$ is by < 1% higher then the Glissando³ calculation, - 5% most violent events chosen based on the number of projectile spectators. Event selection based on the full simulation of the PSD response is under way. Example of 5% most violent Ar+Sc collisions ²Liu et al. *PRC* 74 (), p. 044902. ³Rybczyński et al. Comp. Phys. Comm. 185.6 (), p. 1759. # Results: $\langle \pi^- \rangle$ and $\langle W \rangle$ Preliminary results for 4π , 5% event class $\langle \pi^- \rangle$ and $\langle W \rangle$ for Ar+Sc and Be+Be at different SPS momenta. • Systematic uncertainty of $\langle \pi^- \rangle$ is estimated to be 5% based on previous NA61/SHINE analysis⁴. | | p _{lab} [A GeV/c] | $\langle \pi^- \rangle$ | $\langle W angle$ | |-------|----------------------------|-------------------------|--------------------| | Ar+Sc | 13 | 38.46 ± 1.92 | 66.63 ± 0.50 | | | 19 | 48.03 ± 2.40 | 66.68 ± 1.02 | | | 30 | 59.72 ± 2.98 | 66.72 ± 0.50 | | | 40 | 66.28 ± 3.31 | 66.64 ± 0.57 | | | 75 | 86.12 ± 4.30 | 66.66 ± 0.52 | | | 150 | 108.92 ± 5.44 | 66.88 ± 0.50 | | | p _{lab} [A GeV/c] | $\langle \pi^- \rangle$ | $\langle W \rangle$ | |-------|----------------------------|-----------------------------------|------------------------------------| | Be+Be | 20 | 5.32 ± 0.54 | 10.99 ± 1.02 | | | 30 | $\textbf{7.61} \pm \textbf{0.76}$ | $\textbf{10.86} \pm \textbf{0.50}$ | | | 40 | 8.75 ± 0.44 | $\textbf{10.86} \pm \textbf{0.57}$ | | | 75 | 10.98 ± 0.55 | 10.83 ± 0.52 | | | 158 | 14.32 ± 0.72 | 10.79 ± 0.50 | ⁴N. Abgrall et al. *EPJ C* 74.3 (), p. 1. ## Isospin correction In order to compare results obtained for different systems, the **isospin correction** should be taken into account. To this end a phenomenological formulas are used $$\langle \pi^{-}\rangle_{\mathsf{N+N}} = \langle \pi^{-}\rangle_{\mathsf{p+p}} + \frac{1}{3}$$ $$\langle \pi^{-}\rangle_{\mathsf{Au+Au}}^{\mathsf{I}} = (\langle \pi^{-}\rangle_{\mathsf{Au+Au}} + \langle \pi^{+}\rangle_{\mathsf{Au+Au}})/2$$ The correction is only applied to measurements where its effect is the strongest. This assumption is based on the compilation of the world data presented in⁵ and the model presented therein. Where needed, the data is corrected for slight differences in beam momentum. ⁵Golokhvastov. Physics of Atomic Nuclei 64.1 (), p. 84. # Results: $\langle \pi^- \rangle / \langle W \rangle$ ratio - Data suggests monotonic increase with system size at 150A GeV/c. Ar+Sc and Be+Be measurements in line. - No increase at 30A GeV/c, - Systematic and statistical uncertainties plotted. # The "Kink" plot The Fermi statistical model predicts linear increase of $\langle \pi \rangle / \langle W \rangle$ with the Fermi energy measure $$F = \left[\frac{(\sqrt{s_{\rm NN}} - 2m_{\rm N})^3}{\sqrt{s_{\rm NN}}}\right]^{1/4}$$ An increase of the slope of $\langle \pi \rangle/\langle W \rangle$ – KINK – at the onset of deconfinement is predicted by the SMES⁶ due to the larger number of effective degrees of freedom in comparison to HRG. ⁶Gazdzicki and Gorenstein. APP B30 (), p. 2705. # Estimation of $\langle \pi \rangle$ from $\langle \pi^- \rangle$ As for the NA61 Ar+Sc, Be+Be and p+p data we only have the $\langle \pi^- \rangle$ value, the multiplicities of $\langle \pi^+ \rangle$ and $\langle \pi^0 \rangle$ are approximated multiplying the previously corrected for isospin assymetry multiplicities by factor 3: $$\langle \pi angle_{ m p+p} = 3 \langle \pi^- angle_{ m p+p}$$ $\langle \pi angle_{ m Ar+Sc} = 3 \langle \pi^- angle_{ m Ar+Sc}$ $\langle \pi angle_{ m Be+Be} = 3 \langle \pi^- angle_{ m Be+Be}$ This approach is motivated by the fact that the **NA61/SHINE** acceptance is the largest for π^- . # The "Kink" plot - At high SPS energies Be+Be approximately follows p+p, whereas Ar+Sc follows Pb+Pb. - At low SPS energies no simple systematic is observed. The reason might be physical or due to systematic bias in \langle W \rangle estimate. Full simulation of fragmentation process and PSD response is needed. # Summary - Preliminary results on π^- multiplicites in 5% most violent collisions of Ar+Sc at $p_{\text{lab}}=13$ A, 19A, 30A, 40A, 75A, 150A and Be+Be at $p_{\text{lab}}=20$ A, 30A, 40A, 75A, 158A GeV/c are presented. - The $\langle \pi^- \rangle / \langle W \rangle$ system size dependence is compared with other systems. - The $\langle \pi^- \rangle / \langle W \rangle$ energy dependence is compared with previous p+p and Pb+Pb measurements. - At high SPS energies Be+Be approximetely follows p+p, whereas Ar+Sc follows Pb+Pb. - At low SPS energies no simple systematic is observed. Thank you for your attention.