

News on mean pion multiplicity from NA61/SHINE

Michał Naskręt

WFiA UWr, for the NA61/SHINE collaboration

July 14, 2017

The NA61/SHINE detector

- Fixed target experiment,
- Located at the SPS accelerator,
- Large acceptance spectrometer coverage of the full forward hemisphere, down to $p_T = 0$,
- Selection of **events based on forward energy** (projectile spectators) measured in PSD.

Strong interactions programme at NA61/SHINE

The NA61/SHINE performs a 2D scan over system size and collision energy to study the phase diagram of strongly interacting matter in temperature and baryon density.

Strong interactions programme at NA61/SHINE

In this talk news on 4π mean π^- multiplicity in $^7\text{Be}+^9\text{Be}$ and $^{40}\text{Ar}+^{45}\text{S}$ collision in 5% most violent collisions will be presented.

- Data taking scheduled,
- Data taking planned,

Event classes

Event (centrality) classes are **chosen using the forward energy**, $E_F \approx$ energy of projectile spectators. E_F is measured by the PSD zero-degree calorimeter. This is a unique feature of the NA61/SHINE.

Example for Ar+Sc at 13A GeV/c

PID methods in NA61/SHINE

- dE/dx method estimates multiplicities of π^{\pm} , K^{\pm} , p and \bar{p} using energy loss measurements in TPCs,
- tof-dE/dx method estimates multiplicities of π^{\pm} , K^{\pm} , p and \bar{p} using energy loss and particle time of flight measurements in ToFs,
- h^- method estimates multiplicities of π^- based on the fact that the majority of negatively charged hadrons produced in p+p and A+A collisions are π^- .

The h⁻ method

The h^- method is used to extract π^- spectra in Ar+Sc and Be+Be interactions at different beam momenta. Results refer to pions produced by strong interaction processes and in electromagnetic decays of produced hadrons.

The h⁻ method

- The experimental data undergoes series of quality cuts.
- Spectra of negatively charged particles are detrmined using the selected events and tracks,
- The spectra are corrected for acceptance, reconstruction efficiency and contamination of particles other than primary π^- mesons by EPOS 1.99 Monte Carlo model¹.
- Mean π^- multiplicities in 4π is estimated by summing up the measured spectra and correcting it for missing acceptance by extrapolation.

¹Liu et al. *PRC* 74 (), p. 044902.

The h⁻ method

Example for 40 Ar $+^{45}$ Sc at 19A GeV/c

Corrected π^- spectrum

Extrapolation to 4π acceptance

Results: π^- rapidity spectra

- π^- spectra measured in large acceptance: p_T down to 0, in full forward hemisphere.
- Rapidity spectra are approximately gaussian, independently of the collision energy,
- Only statistical uncertainties plotted.

Mean number of wounded nucleons $\langle W \rangle$

- Mean number of wounded nucleons (nucleons interacting inelastically calculated within the Glauber model) $\langle W \rangle$ obtained using **EPOS 1.99**² Monte Carlo,
- Systematic and statistical uncertainties plotted. Systematic uncertainties are based on the uncertainty of p+p inelastic collision cross section.
- The EPOS $\langle W \rangle$ is by < 1% higher then the Glissando³ calculation,
- 5% most violent events chosen based on the number of projectile spectators. Event selection based on the full simulation of the PSD response is under way.

Example of 5% most violent Ar+Sc collisions

²Liu et al. *PRC* 74 (), p. 044902.

³Rybczyński et al. Comp. Phys. Comm. 185.6 (), p. 1759.

Results: $\langle \pi^- \rangle$ and $\langle W \rangle$

Preliminary results for 4π , 5% event class $\langle \pi^- \rangle$ and $\langle W \rangle$ for Ar+Sc and Be+Be at different SPS momenta.

• Systematic uncertainty of $\langle \pi^- \rangle$ is estimated to be 5% based on previous NA61/SHINE analysis⁴.

	p _{lab} [A GeV/c]	$\langle \pi^- \rangle$	$\langle W angle$
Ar+Sc	13	38.46 ± 1.92	66.63 ± 0.50
	19	48.03 ± 2.40	66.68 ± 1.02
	30	59.72 ± 2.98	66.72 ± 0.50
	40	66.28 ± 3.31	66.64 ± 0.57
	75	86.12 ± 4.30	66.66 ± 0.52
	150	108.92 ± 5.44	66.88 ± 0.50

	p _{lab} [A GeV/c]	$\langle \pi^- \rangle$	$\langle W \rangle$
Be+Be	20	5.32 ± 0.54	10.99 ± 1.02
	30	$\textbf{7.61} \pm \textbf{0.76}$	$\textbf{10.86} \pm \textbf{0.50}$
	40	8.75 ± 0.44	$\textbf{10.86} \pm \textbf{0.57}$
	75	10.98 ± 0.55	10.83 ± 0.52
	158	14.32 ± 0.72	10.79 ± 0.50

⁴N. Abgrall et al. *EPJ C* 74.3 (), p. 1.

Isospin correction

In order to compare results obtained for different systems, the **isospin correction** should be taken into account. To this end a phenomenological formulas are used

$$\langle \pi^{-}\rangle_{\mathsf{N+N}} = \langle \pi^{-}\rangle_{\mathsf{p+p}} + \frac{1}{3}$$
$$\langle \pi^{-}\rangle_{\mathsf{Au+Au}}^{\mathsf{I}} = (\langle \pi^{-}\rangle_{\mathsf{Au+Au}} + \langle \pi^{+}\rangle_{\mathsf{Au+Au}})/2$$

The correction is only applied to measurements where its effect is the strongest. This assumption is based on the compilation of the world data presented in⁵ and the model presented therein.

Where needed, the data is corrected for slight differences in beam momentum.

⁵Golokhvastov. Physics of Atomic Nuclei 64.1 (), p. 84.

Results: $\langle \pi^- \rangle / \langle W \rangle$ ratio

- Data suggests monotonic increase with system size at 150A
 GeV/c. Ar+Sc and Be+Be measurements in line.
- No increase at 30A GeV/c,
- Systematic and statistical uncertainties plotted.

The "Kink" plot

The Fermi statistical model predicts linear increase of $\langle \pi \rangle / \langle W \rangle$ with the Fermi energy measure

$$F = \left[\frac{(\sqrt{s_{\rm NN}} - 2m_{\rm N})^3}{\sqrt{s_{\rm NN}}}\right]^{1/4}$$

An increase of the slope of $\langle \pi \rangle/\langle W \rangle$ – KINK – at the onset of deconfinement is predicted by the SMES⁶ due to the larger number of effective degrees of freedom in comparison to HRG.

⁶Gazdzicki and Gorenstein. APP B30 (), p. 2705.

Estimation of $\langle \pi \rangle$ from $\langle \pi^- \rangle$

As for the NA61 Ar+Sc, Be+Be and p+p data we only have the $\langle \pi^- \rangle$ value, the multiplicities of $\langle \pi^+ \rangle$ and $\langle \pi^0 \rangle$ are approximated multiplying the previously corrected for isospin assymetry multiplicities by factor 3:

$$\langle \pi
angle_{
m p+p} = 3 \langle \pi^-
angle_{
m p+p}$$
 $\langle \pi
angle_{
m Ar+Sc} = 3 \langle \pi^-
angle_{
m Ar+Sc}$ $\langle \pi
angle_{
m Be+Be} = 3 \langle \pi^-
angle_{
m Be+Be}$

This approach is motivated by the fact that the **NA61/SHINE** acceptance is the largest for π^- .

The "Kink" plot

- At high SPS energies Be+Be approximately follows p+p, whereas Ar+Sc follows Pb+Pb.
- At low SPS energies no simple systematic is observed. The
 reason might be physical or due to systematic bias in \langle W \rangle
 estimate. Full simulation of fragmentation process and PSD
 response is needed.

Summary

- Preliminary results on π^- multiplicites in 5% most violent collisions of Ar+Sc at $p_{\text{lab}}=13$ A, 19A, 30A, 40A, 75A, 150A and Be+Be at $p_{\text{lab}}=20$ A, 30A, 40A, 75A, 158A GeV/c are presented.
- The $\langle \pi^- \rangle / \langle W \rangle$ system size dependence is compared with other systems.
- The $\langle \pi^- \rangle / \langle W \rangle$ energy dependence is compared with previous p+p and Pb+Pb measurements.
- At high SPS energies Be+Be approximetely follows p+p, whereas Ar+Sc follows Pb+Pb.
- At low SPS energies no simple systematic is observed.

Thank you for your attention.