Multiplicity dependence of pion, kaon and proton production in pp collisions at $\sqrt{s} = 7$ and 13 TeV

Pranjal Sarma on behalf of the ALICE Collaboration Department of Physics, Gauhati University, Guwahati, India

a PHOBOS Bethe-Bloch [1] formula at $\beta v > 0.7$

<u>Lines:</u> Expected Cherenkov angle.

Particle Identification (pp at $\sqrt{s} = 13$ TeV)

Lines: Bethe-Bloch parametrisation.

Bands: Different particles species.

- No significant evolution of the p/ π yields ratio at LHC energy. The maximum of p/π shifts toward higher p_{τ} , as expected from Constant above $\sqrt{s} = 0.9$ TeV. the multiplicity evolution.
 - Hints of increase of K/π ? Not significant given the systematic errors.

p_spectra for pion, kaon and proton

Models do not satisfactorily describe p/π at high p_{τ} , but

qualitatively describe K/π .

Forward/Backward multiplicity estimator: V0M (2.8 $< \eta < 5.1$ & $-3.7 < \eta < -1.7$

- Individual spectra obtained by combining PID information from ITS, TPC, TOF and HMPID.
- p_{\perp} spectra become harder as multiplicity increases.
- **Hardening is more pronounced** for higher-mass particles.

Strangeness to π ratios vs multiplicity

- All measured particle ratios exihibit a continuous and smooth trend with multiplicity across different collision systems [4, 5, 6].
- **Strange to non-strange** particle ratios increase with multiplicity in pp collisions.
- **Enhancement increases with** strangeness content rather than mass or baryon number of the particles.

Summary & outlook

- At high p_{τ} , p/ π and K/ π ratios differ significantly from the QCD inspired MC model (PYTHIA 8 Monash [7]).
- Further tuning may be required for models.
- Strangeness production is driven by characteristics of final state rather than initial beam energy or colliding system.
- This work provides additional insights into the collective behaviour in small systems.