Beam energy and system dependence of rapidity-even dipolar flow

Niseem Magdy (For the STAR Collaboration)1*

¹ Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400, USA

Abstract. New measurements of rapidity-even dipolar flow, v_1^{even} , are presented for several transverse momenta, p_T , and centrality intervals in Au+Au collisions at $\sqrt{s_{NN}} = 200$, 39 and 19.6 GeV, U+U collisions at $\sqrt{s_{NN}} = 193$ GeV, and Cu+Au, Cu+Cu, d+Au and p+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The v_1^{even} shows characteristic dependencies on p_T , centrality, collision system and $\sqrt{s_{NN}}$, consistent with the expectation from a hydrodynamic-like expansion to the dipolar fluctuation in the initial state. These measurements could serve as constraints to distinguish between different initialstate models, and aid a more reliable extraction of the specific viscosity η/s .

1 Introduction

Heavy-ion collisions (HIC) at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are aimed at studying the properties of the strongly interacting quark-gluon plasma (QGP) created in such collisions. Recent studies have emphasized the use of anisotropic flow measurements to study the transport properties of the QGP [1–7]. A crucial question in these studies was the role of initial-state fluctuations and their influence on the uncertainties associated with the extraction of η/s for the QGP produced in HIC [8, 9]. This work emphasizes new measurements for rapidity-even dipolar flow, v_1^{even} , which could aid a distinction between different initial-state models and facilitate the extraction of η/s with better constraints.

Anisotropic flow is characterized by the Fourier coefficients, v_n , obtained from a Fourier expansion of the azimuthal angle (ϕ) distribution of the emitted particles [10]:

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1} \mathbf{v}_n \cos(n(\phi - \Psi_n)),\tag{1}$$

where Ψ_n represents the *n*th-order event plane, the coefficients v₁, v₂ and v₃ are called directed, elliptic and triangular flow, respectively. The flow coefficients v_n are related to the two-particle Fourier coefficients v_{n,n} as:

$$\mathbf{v}_{\mathbf{n},\mathbf{n}}(p_{\mathrm{T}}^{a},p_{\mathrm{T}}^{b}) = \mathbf{v}_{\mathbf{n}}(p_{\mathrm{T}}^{a})\mathbf{v}_{\mathbf{n}}(p_{\mathrm{T}}^{b}) + \delta_{NF},\tag{2}$$

where p_T^a and p_T^b are the transvers momentum of particles (a) and (b), respectively, and δ_{NF} is a so-called non-flow (NF) term, which includes possible contributions from resonance decays, Bose-Einstein correlations, jets, and global momentum conservation (GMC) [11–15]. The directed flow, v₁,

^{*}e-mail: niseemm@gmail.com

Figure 1. v_{1,1} vs. p_T^b for several selections of p_T^a for 0-5% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The dashed curve shows the result of the simultaneous fit with Eq. 5.

can be separated into an odd function of pseudorapidity (η) [16] which develops along the direction of the impact parameter, and a rapidity-even component [13, 17] which results from the effects of initial-state fluctuations acting in concert with a hydrodynamic-like expansion; $v_1(\eta) = v_1^{even}(\eta) + v_1^{odd}(\eta)$, where Ψ_1^{odd} and Ψ_1^{even} are uncorrelated. The magnitude of v_1^{even} is related to the fluctuations-driven dipole asymmetry ε_1 and η/s [14, 17, 18].

2 Measurements

The correlation function technique was used to generate the two-particle $\Delta \phi$ correlations:

$$C_r(\Delta\phi, \Delta\eta) = \frac{(dN/d\Delta\phi)_{same}}{(dN/d\Delta\phi)_{mixed}},\tag{3}$$

where $(dN/d\Delta\phi)_{same}$ represent the normalized azimuthal distribution of particle pairs from the same event and $(dN/d\Delta\phi)_{mixed}$ represents the normalized azimuthal distribution for particle pairs in which each member is selected from a different event but with a similar classification for the vertex, centrality, etc. The pseudorapidity requirement $|\Delta\eta| > 0.7$ was also imposed on track pairs to minimize possible non-flow contributions associated with the short-range correlations from resonance decays, Bose-Einstein correlations and jets.

The two-particle Fourier coefficients $v_{n,n}$ are obtained from the correlation function as:

$$\mathbf{v}_{\mathbf{n},\mathbf{n}} = \frac{\sum_{\Delta\phi} C_r(\Delta\phi, \Delta\eta) \cos(n\Delta\phi)}{\sum_{\Delta\phi} C_r(\Delta\phi, \Delta\eta)},\tag{4}$$

and then used to extract v_1^{even} via a simultaneous fit of $v_{1,1}$ as a function of p_T^b , for several selections of p_T^a with Eq. 2:

$$\mathbf{v}_{1,1}(p_{\rm T}^a, p_{\rm T}^b) = \mathbf{v}_1^{\rm even}(p_{\rm T}^a)\mathbf{v}_1^{\rm even}(p_{\rm T}^b) - Cp_{\rm T}^a p_{\rm T}^b.$$
(5)

Here, $C \propto 1/(\langle Mult \rangle \langle p_T^2 \rangle)$ takes into account the non-flow correlations induced by a global momentum conservation [14, 15] and $\langle Mult \rangle$ is the mean multiplicity.

For a given centrality selection, the left hand side of Eq. 5 represents the $N \times N$ matrix which we fit with the right hand side using N + 1 parameters; N values of $v_1^{even}(p_T)$ and one additional parameter C, accounting for momentum conservation [19]. Fig. 1 shows a representative result for this fitting procedure for 0 - 5% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The dashed curve (obtained with Eq. 5) in each panel illustrates the effectiveness of the simultaneous fits, as well as the constraining power of the data. That is, $v_{1,1}(p_T^b)$ evolves from negative to positive values as the selection range for p_T^a is increased.

Figure 2. Extracted values of γ_1^{even} vs. p_T for different centrality selections (0-10%, 10-20% and 20-30%) Au+Au collisions for several values of $\sqrt{s_{NN}}$ as indicated; the γ_1^{even} values are obtained via fits with Eq. (5). The solid line in panel (a) shows the result from a hydrodynamic calculations with $\eta/s = 0.16$ [14]. The inset in panel (a) shows a representative set of the associated values of C vs. $\langle Mult \rangle^{-1}$.

Figure 3. Extracted values of v_1^{even} vs. p_T for different $\langle Mult \rangle$ selections for different collisions system at $\sqrt{s_{_{NN}}} \sim 200$ GeV as indicated; the v_1^{even} values are obtained via fits with Eq. (5).

3 Results

Representative v_1^{even} results for Au+Au collisions at $\sqrt{s_{NN}} = 200$, 39, and 19.6 GeV and for different collision systems U+U at $\sqrt{s_{NN}} = 193$ GeV, and Cu+Au, Cu+Cu, d+Au and p+Au at $\sqrt{s_{NN}} = 200$ GeV are summarized in Figs. 2 and 3. The values of $v_1^{even}(p_T)$ extacted for different centrality selections (0-10%, 10-20% and 20-30%) are shown in Fig. 2; the solid line in panel (a) shows the a hydrodynamic calculations with $\eta/s = 0.16[14]$, which in good agreement with our measurements, the inset shows the corresponding results for the associated momentum conservation coefficient, *C*, extracted for several centralities at $\sqrt{s_{NN}} = 200$ GeV. The $v_1^{even}(p_T)$ values indicate the characteristic pattern of a change from negative $v_1^{even}(p_T)$ at low p_T to positive $v_1^{even}(p_T)$ for $p_T > 1$ GeV/c, with a crossing point that shifts with $\sqrt{s_{NN}}$. They also indicate that v_1^{even} increase as the centrality become more peripheral, as might be expected from the centrality dependence of ε_1 .

The extracted values of $v_1^{even}(p_T)$, for different collision systems are compared in Fig. 3 for different values of $\langle Mult \rangle$. Figs. 3(a), 3(b) and 3(c) indicate similar $v_1^{even}(p_T)$ magnitudes for the systems specified at each $\langle Mult \rangle$, as well as the characteristic pattern of a change from negative $v_1^{even}(p_T)$ at low p_T to positive $v_1^{even}(p_T)$ for $p_T > 1$ GeV. This pattern confirms the predicted trends for rapidityeven dipolar flow [13, 14, 17] and further indicates that for the selected values of $\langle Mult \rangle$, $v_1^{even}(p_T)$ does not show a strong dependence on the collision system. This apparent system independence of $v_1^{even}(p_T)$ for the indicated $\langle Mult \rangle$ values suggests that the fluctuations-driven initial-state eccentricity ε_1 , is similar for the six collision systems. It also suggests that the viscous effects that are related to η/s are comparable for the matter created in each of these collision systems.

4 Conclusion

In summary, we have used the two-particle correlation method to carry out new differential measurements of rapidity-even dipolar flow, v_1^{even} , in Au+Au collisions at different beam energies, and in U+U, Cu+Au, Cu+Cu, d+Au and p+Au collisions at $\sqrt{s_{NN}} \approx 200$ GeV. The measurements confirm the characteristic patterns of an evolution from negative $v_1^{even}(p_T)$ for $p_T > 1$ GeV/c to positive $v_1^{even}(p_T)$ for $p_T > 1$ GeV/c, expected when initial-state geometric fluctuations act in concert with the hydrodynamic-like expansion to generate rapidity-even dipolar flow. This measurements provide additional constraints which are important to discern between different initial-state models, and to aid precision extraction of the temperature dependence of the specific shear viscosity.

Acknowledgments

This research is supported by the US Department of Energy under contract DE-FG02-87ER40331.A008.

References

- [1] D. Teaney, Phys.Rev. C68, 034913 (2003), nucl-th/0301099
- [2] R.A. Lacey, A. Taranenko, PoS CFRNC2006, 021 (2006), nucl-ex/0610029
- [3] B. Schenke, S. Jeon, C. Gale, Phys.Lett. B702, 59 (2011), 1102.0575
- [4] H. Song, S.A. Bass, U. Heinz, Phys.Rev. C83, 054912 (2011), 1103.2380
- [5] H. Niemi, G. Denicol, P. Huovinen, E. Molnar, D. Rischke, Phys.Rev. C86, 014909 (2012), 1203.2452
- [6] G.Y. Qin, H. Petersen, S.A. Bass, B. Muller, Phys.Rev. C82, 064903 (2010), 1009.1847
- [7] N. Magdy (STAR), J. Phys. Conf. Ser. 779, 012060 (2017)
- [8] B. Alver, G. Roland, Phys. Rev. C81, 054905 (2010), [Erratum: Phys. Rev.C82,039903(2010)], 1003.0194
- [9] R.A. Lacey, D. Reynolds, A. Taranenko, N.N. Ajitanand, J.M. Alexander, F.H. Liu, Y. Gu, A. Mwai, J. Phys. G43, 10LT01 (2016), 1311.1728
- [10] A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C58, 1671 (1998), nucl-ex/9805001
- [11] R.A. Lacey, Nucl. Phys. A774, 199 (2006), nucl-ex/0510029
- [12] N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C62, 034902 (2000), nucl-th/0004026
- [13] M. Luzum, J.Y. Ollitrault, Phys. Rev. Lett. 106, 102301 (2011), 1011.6361
- [14] E. Retinskaya, M. Luzum, J.Y. Ollitrault, Phys. Rev. Lett. 108, 252302 (2012), 1203.0931
- [15] G. Aad et al. (ATLAS), Phys. Rev. C86, 014907 (2012), 1203.3087
- [16] P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002), nucl-th/0208016
- [17] D. Teaney, L. Yan, Phys. Rev. C83, 064904 (2011), 1010.1876
- [18] F.G. Gardim, F. Grassi, Y. Hama, M. Luzum, J.Y. Ollitrault, Phys. Rev. C83, 064901 (2011), 1103.4605
- [19] J. Jia, S.K. Radhakrishnan, S. Mohapatra, J. Phys. G40, 105108 (2013), 1203.3410