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Abstract. In an era of high-precision determinations of QGP properties a full incorpo-
ration of fluid dynamical fluctuations into our models has become crucial, in particular,
when describing the dynamics of small systems or near the conjectured QCD critical
point. In this talk we discuss some effects of the propagation of these fluctuations. For
LHC physics we focus on fluctuations in the energy-momentum tensor, while the impact
of fluctuations in the diffusive net-baryon density is studied to improve our knowledge on
the formation of critical fluctuations being searched in current and future BES programs.

1 Introduction
The bulk expansion of the quark-gluon plasma (QGP) formed in relativistic heavy-ion collisions [1, 2]
can successfully be described by means of conventional dissipative fluid dynamics [3]. In conventional
fluid dynamics thermal averages of energy, momentum and conserved charges, such as net-baryon
number, are propagated. Including dissipative effects into the fluid dynamical framework demands,
however, to also incorporate fluctuations. This is because the role of the dissipation, in accordance
with the fluctuation-dissipation theorem, is to counteract intrinsic fluid dynamical fluctuations which
drive systems constantly out of equilibrium. These depend on the number of particles or the volume
and, thus, become essential for small systems or systems undergoing a phase transition where long-
range correlations develop.

In the vicinity of the conjectured QCD critical point fluctuation signals, as searched in the beam
energy scan (BES) programs, are expected to be significantly enhanced [4–7]. The diffusive net-
baryon density nB becomes the slowest critical mode [8, 9], and fluctuations in the net-baryon number
and related observables promise therefore indicative signatures. Nonequilibrium effects caused by the
fast expansion of the matter can, however, quantitatively affect the fluctuation signals [10–17]. This
talk reports, in continuation of [18], on our recent progress in developing dynamical models capable
of fully propagating intrinsic fluctuations in fluid dynamics as relevant both for vanishing nB (Sec. 2)
and for the dynamics of critical fluctuations (Sec. 3).

2 The role of fluid dynamical fluctuations
Fluid dynamical fluctuations are embedded into the full evolution equations of a relativistic fluid via

∂µT µν = ∂µ
(
T µν

eq + ∆T µν
visc + Ξµν

)
= 0 (1)
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Figure 1. Spatio-temporal evolution of the
energy density in units of GeV/fm3 shown in
one spatial direction within the first 100 fm/c
for a fluid confined in a box of length 100 fm.
The fluid has a specific shear viscosity
η/s = 0.2 and initially a homogeneous energy
density e0 = 10 GeV/fm3. This result is
obtained for a resolution of 1/∆x = 1/fm.

by adding the noise field tensor Ξµν to the conventional dissipative energy-momentum tensor T µν. The
correlators of the noise components are obtained in linear response theory and read for a conformal
fluid in 3 + 1 dimensions in Gaussian white noise approximation

〈Ξµν(x) Ξαβ(x′)〉 = 2Tη
(
∆µα∆νβ + ∆µβ∆να −

2
3

∆µν∆αβ

)
δ(4)(x − x′) (2)

while their mean values vanish. For relativistic fluids the dissipative corrections ∆T µν
visc are dynamical

quantities whose evolution is subject to Israel-Stewart type relaxation equations. It makes sense to
evolve the noise fields in a similar fashion via uγ∂γΞ〈µν〉 = − (Ξ µν − ξ

µν
Gauss)/τξ, where the compo-

nents ξ µνGauss are correlated as in Eq. (2). As a consequence, the noise is correlated in time within the
relaxation time τξ.

We have incorporated fluctuations in T µν into the 3 + 1d relativistic viscous fluid dynamics code
vHLLE [19]. For exemplary numerical studies we choose the noise relaxation time to be the same as
that of the shear stresses and consider a fluid in a static box with periodic boundary conditions. With
decreasing lattice spacing ∆x < 1 fm the handling of large gradients caused by the increasing variance
of the noise becomes challenging for the present algorithm such that we opt for smoothing the noise
fields over lengths of 1 fm.

Figure 1 shows the evolution of the energy density, which we initialize at a homogeneous value
e0, along one spatial direction. Fluctuations induce local deviations from the average energy and
momentum densities which are propagated by the fluid dynamical equations. As time progresses, a
non-zero local variance of the energy density builds up and saturates. Moreover, the average energy
density in the box is reduced by about 3% at late times. This is because the nonlinearities in fluid
dynamics modify thermal averages in a nontrivial way: the interactions of the fluctuations lead, for
example, to cutoff-dependent corrections in the equation of state and the transport coefficients [20, 21].
A diligent numerical implementation of fluctuating fluid dynamics needs to correct such effects. This
will be a crucial aspect of future work on small systems as created in p-p(A) collisions [22].

3 Stochastic diffusion of critical fluctuations

Similarly, fluctuations can be included into the conservation equation of the net-baryon number
∂µNµ = ∂µ

(
Nµ

eq + ∆Nµ
visc + Iµ

)
= 0 via a noise vector Iµ. Considering, for simplicity, a nonrelativistic

fluid with space-time independent fluid velocity at a homogeneous temperature T , the conservation
equation reduces to a stochastic diffusion of the net-baryon density,

∂tnB(t, x) = Γ∇2F ′[nB] + ∇J(t, x) , (3)
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Figure 2. Equal-time correlation functions as a function of distance r in units of fixed ∆x = L/Nx for T = Tc and
different L in the Gauss (K = 0, left panel) and Gauss+surface (K = 1/ξ0, right panel) model. The number of
grid sites in the numerics (symbols) is Nx = 128 for L = 10 fm and Nx = 256 for L = 20 fm. The solid curves
depict analytic expectations for the employed implicit scheme.

which follows the minimization of the free energy functional

F [nB] = T
∫

d3x
(

m2

2n2
c
δn2

B +
K

2n2
c

(∇δnB)2
)
. (4)

Here, Γ is the mobility coefficient, δnB = nB − nc with critical density nc, and J(t, x) =
√

2TΓζ(t, x)
is a stochastic current with Gaussian white noise ζ(t, x), which itself has unit variance. We include
criticality via the coupling m2 = 1/(ξ0ξ

2) which is a function of the equilibrium correlation length ξ
whose temperature-dependence can be obtained from the 3d Ising model equation of state [23, 24].
The kinetic term in Eq. (4) depends on the surface tension K.

The free energy functional contains only Gaussian terms such that Eq. (3) is linear in nB. This
allows us to study the stochastic equation numerically with a simple implicit scheme. Moreover, we
confine the diffusion to a one-dimensional system of length L with periodic boundaries which implies
that cutoff-effects are absent and the results approach continuum expectations with decreasing lattice
spacing. In the numerics we initialize nB homogeneously at nc = 1/(3fm3), choose Γ = 1/(3T fm2)
and ξ0 = 0.479 fm, fix the pseudo-critical temperature Tc = 0.15 GeV at which ξ(Tc) ' 6.4 ξ0, and
analyze equilibrium observables only after a sufficient equilibration time.

In Fig. 2 we show the equal-time correlation functions 〈δnB(r) δnB(0)〉 for the cases K = 0 and
K = 1/ξ0. For K = 0, fluctuations are uncorrelated over distances larger than ∆x. Instead, a non-
zero surface tension term permits the development of real long-range correlations: for L = 20 fm,
we find a numerically realized correlation length of about 5.8 ξ0 which goes asymptotically to ξ(Tc)
with increasing L. In both cases, we observe a non-zero local variance 〈δnB(0)2〉 emerging from the
purely white noise. While 〈δnB(0)2〉K=0 depends on 1/∆x in line with the thermodynamic expectation
〈δnB(r)2〉K=0 = (n2

c/m
2) δ(r), for K , 0 the numerics approaches the grandcanonical continuum expec-

tation 〈δnB(r) δnB(0)〉 = (n2
c/
√

4m2K) e−r/ξ as L→ ∞. For a finite L, however, one finds in both cases
negative correlations at large r as a consequence of exact charge conservation

∫
L〈δnB(r) δnB(0)〉 dr = 0

in the finite size system. Note that the non-Gaussian fluctuations remain zero for the considered Gaus-
sian models.



4 Conclusions

The full implementation of intrinsic fluctuations into fluid dynamics presents a challenge for current
theoretical models, but is also a crucial step toward a realistic description of the QCD dynamics probed
in heavy-ion collisions. The accurate treatment of nonlinear interactions connected with the necessity
of a careful renormalization of cutoff-effects requires a systematic effort. We discussed a stochastic
diffusion of the net-baryon density which is able to capture the critical phenomena of the Gaussian
fluctuations and highlights, in particular, the importance of charge conservation in finite-size systems.
In future work, we will report on the statics and real-time dynamics of non-Gaussian fluctuations [25].
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