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Abstract. Two AdS/CFT based energy loss models are used to compute the suppression
and azimuthal correlations of heavy quarks in heavy ion collisions. The model with
a velocity independent diffusion coefficient is in good agreement with B and D meson
data up to high pT . The partonic azimuthal correlations we calculate exhibit an order of
magnitude difference in low momentum correlations to pQCD calculations [1]. We thus
propose heavy flavour momentum correlations as a distinguishing observable of weakly-
and strongly-coupled energy loss mechanisms.

1 Introduction
The quark gluon plasma is of great interest since it represents our first case study of the emergent
physics of the non-abelian gauge theory QCD. A key step in understanding this state of matter is
identifying its relevant coupling strength. The perturbative techniques of QCD are only adequate in
a weakly coupled plasma, with calculations for strongly coupled plasmas constrained to methods like
AdS/CFT-based approaches or Resonance Scattering [2].

Both strong- and weak-coupling show qualitative agreement with RD
AA [3], suggesting that they

have attained sufficient maturity to compare them with more differential observables. We will argue
that the momentum correlations of bottom quarks constitute a promising candidate as a differentiator
between weakly and strongly coupled plasmas.

We will use two different AdS/CFT based energy loss models, one [4] with a velocity dependent
diffusion coefficient and the other [5] with a diffusion coefficient independent of the heavy quark’s
velocity. Futhermore, we will probe the spectrum of their possible predictions with two plausible [6]
’t Hooft coupling constants (λ1 = 5.5 and λ2 = 12παs ≈ 11.3 with αs = 0.3) where for the former,
temperature and the Yang-Mills coupling are equated, while for the latter constant, energy density and
the coupling are equated.

We will compare these with the pQCD based azimuthal correlations calculated in [1]. These will
provide a secondary indicator for the momentum correlations.

Finally, we will compute the suppression of B and D mesons and compare with measurements
from CMS [7] and ALICE [8] respectively.
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2 Energy Loss Model and Suppression
2.1 Overview
Subsequent to initializing the momenta of heavy quark pairs either to leading order with FONLL
[9] or to next-to-leading order with aMC@NLO [10] using Herwig++ [11] for the showering and
hadronization, the production points of the heavy quarks are weigthed by the Glauber binary distri-
bution [4]. The particles are propagated through the plasma via the energy loss mechanism described
in 2.2 until the temperature in their local fluid cell drops below the Tc threshold and hadronization is
presumed to occur or 8.6fm had passed, being the maximum time of the VISHNU background [12].

2.2 Langevin Energy Loss
The stochastic equation of motion for a heavy quark in the fluid’s rest frame is [13]

dpi

dt
= −µpi + FL

i + FT
i (1)

where FL
i and FT

i are longitudinal and transverse momentum kicks with respect to the quark’s direc-
tion of propagation and with µ, the drag loss coefficient, being given by µ = π

√
λT 2/2MQ [14] where

MQ is the mass of a heavy quark in a plasma of temperature T with ’t Hooft coupling constant λ. The
correlations of momentum kicks are given by

〈FT
i (t1)FT

j (t2)〉 = κT (δi j −
~pi~p j

|p|2
)g(t2 − t1) (2) 〈FL

i (t1)FL
j (t2)〉 = κL

pi p j

|p|2
g(t2 − t1) (3)

where g is only known numerically [4] and with
κT = π

√
λT 3γ1/2 (4) κL = γ2κT = π

√
λT 3γ5/2 (5)

It should be noted that this construction does not obey the fluctuation-dissipation theorem [4]. The
computations based on this model will be labeled D(p).

2.3 Development on energy loss model
The problem with the energy loss mechanism described in 2.2 is that since the longitudinal momen-
tum fluctuations grow as γ

5
2 , our setup breaks down for high momenta, where in a perturbative QCD

setting, Brehmstrahlung would restrict the momentum growth of the quark. Via a novel calculation
presented in [5, 15, 16], we instead consider a stationary string in AdS d hanging into a black hole hori-
zon and calculate s2(t, a, d) of the free endpoint. For the the d = 3 result, the average squared distance
travelled can be determined analytically for small string lengths, which is identical to the asymptoti-
cally late time behavior of a string with arbitrary initial length. We thus find the asymptotically late
time behavior of a string in d dimensions by

s2(t � β, a, d) = s2
small(t � β, a, d) = (

d − 1
2

)2s2
small(t � β, a, d = 3) =

(d − 1)2

8π
√
λ
β(1 −

a
2

) (6)

where β = T−1 and a parametrizes between a heavy quark for a = 0 and a light quark for a = 1. At
late times, the motion is diffusive, thus we can extract the diffusion coefficient

D(a, d) ∼
1
2

s2(t � β, a, d) (7)

which in AdS 5 for a heavy quark reads 2β/π
√
λ. From this, we obtain

κT = 2T 2/D = π
√
λT 2/β = π

√
λT 3 (8) q̂ = 〈p⊥(t)2〉λ ≈ κT t/λ = (πT 3t)/

√
λ (9)

Requiring these fluctuations to obey the fluctuation-dissipation theorem, we attain µ =

π
√
λT 2/2E. The computations based on this model will be labeled D=const.
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Figure 1: Bottom quark dN
dφ correlations for the specified classes.

3 Azimuthal correlations and RAA

In [1], at leading order, the weak coupling based computations exhibited very efficient broadening of
initial azimuthal correlations for low pT bb̄ pairs ([4 − 10] GeV), which were washed out once NLO
production processes were taken into consideration.

Both for mid- and high-pT ([4 − 10] GeV and [10 − 20] GeV respectively), the initial correlations
survive to a large degree, both at leading order and at next-to-leading order, suggesting that they may
still be observable in an experimental context.

We compare our strong coupling azimuthal correlations to the weak coupling ones in Fig. 1. For
[10 − 20] GeV, our correlations are significant more peaked at their initial back-to-back correspon-
dence. At [4 − 10] GeV, this observation still holds for the upper bound of our parameters with
λ1 = 5.5, while the λ2 = 11.3 bounded result is of similar magnitude but looser angular correlation
than either the collisional or the collisional + Bremsstrahlung based results. In the [1− 4] GeV range,
the azimuthal correlations are almost entirely washed out for λ2 = 11.3, while for λ1 = 5.5, they are
broadened with similiar efficiency to the weak coupling results.

Having compared our strong coupling results with pQCD calculations at leading order, we now
turn to a more realistic simulation that we can compare with data. The results shown in Fig. 2 are
from the next-to-leading order procedure described in 2.1.

In Fig. 2, we compare our calculations for the suppression of B mesons with measurements from
CMS. At low pT , both D(p) and D=const models are consistent with data. At high pT , the agreement
is inconclusive.

Conversely, for the calculation of averaged D0, D+, and D−, the D(p) model diverges from ALICE
data [8]. This divergence is due to the momentum fluctuations going as γ

5
2 . The D=const model

remains consistent with data even for high-pT .

4 Conclusion & Outlook

We have compared the azimuthal correlations predicted by pQCD and AdS/CFT based computations
and found that, while the azimuthal correlations are qualitatively similar, the momentum correlations
tell a different tale. In particular, the surprise of our findings is the large dissimilarity in low momen-
tum correlations of the pQCD and AdS/CFT based simulations; see Fig. 1 (left). Thus, bottom quark
momentum correlations present an opportunity to distinguish between the energy loss mechanisms of
the two frameworks.

Although stronger momentum fluctuations in the weakly coupled plasma have been identified as
a plausible explanation for this disparity, it can only be verified by computing initial correlations
for the weak coupling based correlations as well. Furthermore, whether this order of magnitude
difference in predictions for low pT correlations of bottom quarks exposes weaknesses in either or both



Figure 2: (Left) Comparison with RB
AA data from CMS [7] with

√
sNN = 5.02 TeV, |y| < 2.4. (Right)

Comparison with RD
AA data from ALICE [8] with

√
sNN = 5.02 TeV, |y| < 0.5.

of the frameworks cannot be declared until experimental data of bottom quark momentum correlations
emerge.

While the agreement with CMS data for B meson suppression is comparable between the D(p)
and D=const models, the comparison with ALICE data for D mesons shows the limited validity range
of the D(p) model, whereas the D=const model remains consistent with data even for high-pT . More
fundamentally, for the D(p) model, the AdS/CFT picture naturally breaks down at pT ∼ 100 GeV [4].
For the D=const model, there is no such natural breakdown. Only for asymptotically large pT and T
is one guaranteed that the physics is perturbative.
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