

YARR for RD53A

RD53A Meeting - 20.10.2016

Timon Heim - LBNL

UNIVERSITY O

YARR in a Nutshell

Hardware:

- COTS PCIe FPGA board
- Custom adapter boards connecting to common FMC connector, specific to each FE or purpose

Firmware:

- Commands are sent via FIFOs
- Data is received, deserialised, decoded and then buffered in DDR RAM
- Chunks of data are transferred via DMA into host memory
- No preprocessing of data performed

Software:

- Contains all intelligence
- Scan engine performs looping actions, e.g. select pixels, inject & trigger, etc
- Data processing, histogramming and analysis decoupled from scan engine in a modular multi-threaded architecture

https://github.com/Yarr/Yarr/tree/devel

Current Hardware

BERKELEY LAB

PCIe card:

- Simple PCIe carrier (SPEC) board developed by CERN
- Available from multiple industrial suppliers for about 700\$
- Xilinx Spartan 6 FPGA
- FMC-LPC has 34 LVDS pairs, max bandwidth of 1080 Mbps per pair
- Achieving around 3.2Gbit/s bandwidth via PCIe

SFP

PCIe local bus bridge

4-lane PCIe v1.1 Interface

www.ohwr.org/projects/spec/wiki

FE-14:

- Three LVDS interface: Clk, Cmd, DataOut
- Clk/Cmd 40Mhz/40Mbps

FMC to VHDCI

- DataOut 160Mbps
- Using RJ45 connector and Ethernet cables

FE-I4 & FE65-P2 Adapter Cards

VHDCI to 8 x RJ45

FE65-P2 Adapter Card + Single Chip Card

LVDS \rightarrow CMOS 3.3V \rightarrow CMOS 1.2V

34xLVDS

FE65-P2:

- CMOS I.2V signals
- Total of 10 signals for SPI, trigger and reset
- 3 Clk inputs
- Pseudo differential hitOr and data output
- Needs external reference current

Software

Scan:

- Collection of nested loops
- Specified in scan config
- Dynamically constructed at runtime
- No fixed number of loops
- No fixed order of loops

Loop Actions:

- Change registers
- Activate portions of pixels
- Inject & trigger
- Loop over columns

- Pixel chips often work in similar manners:
 - Scans: configure, select portion of pixels, inject & trigger, readout
 - Data taking: receive/generate trigger, readout
- Main difference of FE65-P2 to FE-I4 is the physical interface, which is being adapted to a FE-I4-like serial interface in firmware
- Parts in software specific to FE65-P2: configuration, commands, loop actions/scans and first stage data processing
- Parts in software shared with FE-I4: histogramming, analysis, tuning procedure
- Flexibility in software very useful during chip characterisation

Debugging capabilities

- Initial chip characterisation != typical chip operation
- Special features in firmware:
 - ChipScope: in FPGA logic analyzer to track en/decoding issues
 - TDC or delay lines with sub ns resolution placable
 - Simple interfacing with external signals, e.g. pulser for injection
- Special features in software:
 - Full raw data stream available \rightarrow Low level debugging in software
 - Highly flexible scan structure, loops quickly swapped or changed
 - Configuration and commands fully contained in software
 - All tools available via command line \rightarrow no clumsy GUI handling
- Inclusion of typical test bench hardware via GPIB to USB

Hardware for RD53A

Hardware:

- RD53A link speed requires new hardware
- Developing on <u>PLDA XpressK7</u>
 - ~1200\$ available from multiple distributors
 - Partial FMC-HPC interface
 - 4 x 5Gbit/s links or many <1.2Gbit/s links
 - SO-DIMM for up to 4GB DDR3
 - $4 \times PCle \ v2$ (perhaps v3) $\approx 20Gbit/s$
- In the process of migrating current SPEC firmware
- Other PCIe board exists, but are more expensive
- Backwards compatible with old adapter Boards

Ada	pter	Board:
	51 Mar	

- Planning to use DisplayPort
 - 4 high speed lanes rated up to 8Gbit/s
 - I slow link rated up to 720 Mbit/s
- Has power but only rated for 3.3V/ 500mA
- Cables readily available
- Also compatible with Mini-DisplayPort
- Will already be used for the chip emulator

Externa	al connector (so	urce-side) on PCB	
in 1	ML_Lane 0 (p)	Lane 0 (positive)	
in 2	GND	Ground	
in 3	ML_Lane 0 (n)	Lane 0 (negative)	
in 4	ML_Lane 1 (p)	Lane 1 (positive)	
in 5	GND	Ground	
in 6	ML_Lane 1 (n)	Lane 1 (negative)	
in 7	ML_Lane 2 (p)	Lane 2 (positive)	

Ground

ML_Lane 2 (n) Lane 2 (negative)

in 10	ML_Lane 3 (p)	Lane 3 (positive)
in 11	GND	Ground
in 12	ML_Lane 3 (n)	Lane 3 (negative)
in 13	CONFIG1	connected to Ground ¹⁾
in 14	CONFIG2	Connected to Ground ¹⁾
in 15	AUX CH (p)	Auxiliary Channel (positive)
in 16	GND	Ground
in 17	AUX CH (n)	Auxiliary Channel (negative)
in 18	Hot Plug	Hot Plug Detect
in 19	Return	Return for Power
in 20	DP_PWR	Power for connector (3.3 V 500 mA)

GND

Pin 8

Pin 9

Software for RD53A

- Use same concept already in place for FE-I4 and FE65-P2
- Integration of FE65-P2 already forced FE abstraction, adding another type of FE very easy
- Performance benchmarks show that a standard modern PC should be able to handle the amount of data
- As there is no processing of either commands or data in firmware, software could interface with chip simulation (via dummy hardware controller)
- Planning on preparing a simplified software chip emulator, this helps during development as software can be tested w/o hardware

Status & Plans

- BERKELEY LAB
- One master student currently working on migration of firmware to Kintex 7 platform, should have first benchmark results by December
- One grad student will start in December and prepare the software integration, as well as possible interfacing with chip simulation/ verification
- One undergrad working on cheap Arduino controlled Peltier cooler
- One postdoc will work on the software chip emulator
- Working in close collaboration with Washington group, who is working on the emulator which will also provide transmitter and receiver block (see Logans talk)
- Software is intended to be hardware agnostic, in such a way that the core can be reused with the full scale detector DAQ → wider range of hardware might become available