what do we need?

wanted precision:

- pattern recognition: better than the hit separation distance
- track fit: much better than the combination of measurement and multiple scattering errors
useful trajectories: from primary vertices + short lived decays $+K_{s} / \Lambda$ decays if possible
guidelines:
- the state on surface A lies in a small region of the 5D-space of track parameters
- the wanted precision scales as $1 / p$ in most cases
- in general, one needs to consider a few predefined surfaces + short range extrapolations
standard method (used as reference): stepwise propagation using the Runge-Kutta algorithm problem: access to a field map (possibly big size) and CPU time consumption

orders of magnitude and working conditions

typical conditions for initial plane at $\mathrm{z}=1 \mathrm{~m}$:
$\sigma\left(\mathrm{z}_{\text {vertex }}\right) \sim 5 \mathrm{~cm} \rightarrow \delta \mathrm{t} \sim 0.05 \times \mathrm{t}$
impact parameter for K_{S} products $\sim 2.5 \mathrm{~cm} \rightarrow \delta \mathrm{t} \sim 0.025$
domain used in initial plane to fit the coefficients

- $\mathrm{p}>\mathrm{p}_{\min }=3 \mathrm{GeV} / \mathrm{c}$ (good chance to remain within the acceptance)
- $|\delta t|_{\max }=0.01\left(0.03\right.$ for K_{S} studies $)$
- $|x|$ and $|y|<0.25 \mathrm{~m}$
computation:
- tabulation on 100×100 or 25×25 positions in plane A within $\pm 0.25 \mathrm{~m}$
- 20 values of q / p within $\left(-1 / p_{\text {min }}, 1 / p_{\text {min }}\right)$
- for each one, 20×20 values of $\delta t_{x}, \delta t_{y}$ in $\left(-|\delta t|_{\max },|\delta t|_{\max }\right)$
- deviations from straight line using Runge-Kutta
- 1.s. fit of the coefficients up to the wanted degree
- coefficient of global dependence on q / p : fit on the test sample
test sample:
- flat distribution in q / p in $\left(-1 / \mathrm{p}_{\text {min }}, 1 / \mathrm{p}_{\text {min }}\right)$
- distribution in $p_{t}: \exp \left(-p_{t} / 1 \mathrm{GeV} / \mathrm{c}\right)$
- vertex: $\sigma_{\mathrm{z}}=60 \mathrm{~mm}, \sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=0.1 \mathrm{~mm}\left(15 \mathrm{~mm}\right.$ for K_{S} studies $)$

Remark: Δx expanded in $q / p \rightarrow q / p$ expanded in Δx (prediction of momentum with initial segment + hit assignment)

expectations for a submillimetric precision: we need at least k up to 4 problematic region: large y

need for degree 4 in q / p ?

in green: x and y within $(0.08,0.12 \mathrm{~m})$
clear quartic dependence suggests a tabulated term in $(\mathrm{q} / \mathrm{p})^{4}$

interpolation from xy table: bilinear vs quadratic

bilinear interpolation using 4 neighbouring points: amounts to define $a+b x+c y+d x y$ within the square (exact value on the vertices of the rectangle, but biased if terms in x^{2} and/or y^{2} are needed to match the shape)
quadratic interpolation using 6 closest points to define $a+b x+c y+d x y+e x^{2}+f y^{2}$
may be defined as a linear combination of the 6 values with $\mathrm{X}=\mathrm{x} / \Delta \mathrm{x}, \mathrm{Y}=\mathrm{y} / \Delta \mathrm{y}$, the « matrix » of coefficients may be written in this configuration (X and Y in $[-0.5,0]$) as:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 &
\end{array}\right)+\frac{X}{2}\left(\begin{array}{rrr}
& 0 \\
-1 & 0 & 1 \\
0 & 0 &
\end{array}\right)+\frac{Y}{2}\left(\begin{array}{rrr}
& 1 & \\
0 & 0 & 0 \\
0 & -1 &
\end{array}\right)+\frac{X^{2}}{2}\left(\begin{array}{rrr}
& 0 \\
1 & -2 & 1 \\
0 & 0 &
\end{array}\right)+\frac{Y^{2}}{2}\left(\begin{array}{rrr}
1 & 1 \\
0 & -2 & 0 \\
0 & 1 &
\end{array}\right)+X Y\left(\begin{array}{rrr}
& 0 \\
-1 & 1 & 0 \\
1 & -1
\end{array}\right)
$$

more computations but better precision with reduced tables

technical issues

- polynomial of high degree fitted on equidistant points:

the residuals are large on the ends (and diverge rapidly when going beyond); here the fit is done on points at $(-0.9,-0.7 \ldots . .0 .7,0.9) / \mathrm{p}_{\min }$ so it is actually constrained for $\mathrm{p}>\mathrm{p}_{\min } / 0.9$
the result is often « too good » at high p compared to low p. It may be possible to compensate this effect by setting more fitting points at large $1 / \mathrm{p}$; it may be advantageous to chose $\mathrm{p}_{\text {min }}$ lower than the value wanted for applications

- linking extrapolations between successive planes:
if the trajectory is split in several steps (e.g. for a Kalman Filter), it may be easier to find separately solutions with lower degrees. However, the errors on x and t_{x} are tightly correlated (similarly for y and t_{y}), so there is a cumulative effect: even if each step fulfills the quality criteria, their combination may be unacceptable.
- accessing big tables vs making many operations:
to be discussed with experts

summary and comments

- within a restricted region of the 5D phase space of trajectories (tracks of physical interest), it is possible to obtain a fast and precise extrapolation between two predefined surfaces, through a polynomial expansion with tabulated coefficients. These tables provide also the jacobian matrix.
- there are many tunable < handles » in the machinery (degrees of expansion, fitting ranges, region within the acceptance). It may be tailored for a specific purpose in a specific setup (done for LHCb, see talk by S. Stemmle)
- there may be < bad » regions in the phase space: depending on the population, one can make a local refinement, or apply the standard RungeKutta method. In any case, one can know a priori if a state is in a bad region
- a compromise has to be found between the size of the tables and the precision of the interpolation.
- for large p, in a central region with nearly parallel field lines, convenient parametrizations with less coefficients may be used (see talk by S. Stemmle)

