

Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

Connecting The Dots 2017: March 8, 2017

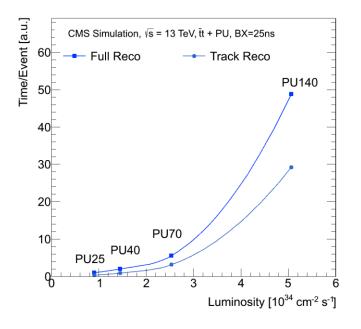
G. Cerati⁴, P. Elmer³, S. Krutelyov¹, S. Lantz², <u>M. Lefebvre³</u>, M. Masciovecchio¹, K. McDermott², D. Riley², M. Tadel¹, P. Wittich², F. Würthwein¹, A. Yagil¹

- 1. University of California San Diego
- 2. Cornell University
- 3. Princeton University
- 4. Fermilab

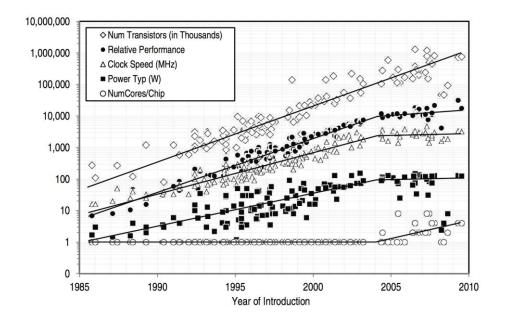
Outline

- Problematic & experimental setup
- Parallelizing on x86 processors: Sandy Bridge and Knights Corner
 - Challenges
 - Data structures
 - Algorithmic approaches
 - Results
- Parallelizing on GPUs
 - Porting Strategy
 - Data structures
 - Track fitting: lessons learned
 - Track building: increasing the algorithmic complexity
 - First results
- Avoiding code duplication
- Conclusion & Perspectives

```
Why Parallelizing?
```



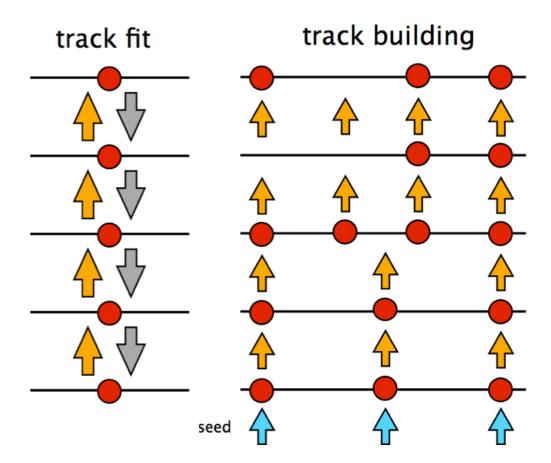
- By 2025, the instantaneous luminosity of the LHC will increase by a factor of 2.5, transitioning to the High Luminosity LHC
- Increase in detector occupancy leads to significant strain on read-out, selection, and **reconstruction**



- Clock speed stopped scaling
- Number of transistors keeps doubling every ~18 months
- ➔ Multi-core architectures
 - E.g. Xeon, MIC, GPUs

KF Track Reconstruction

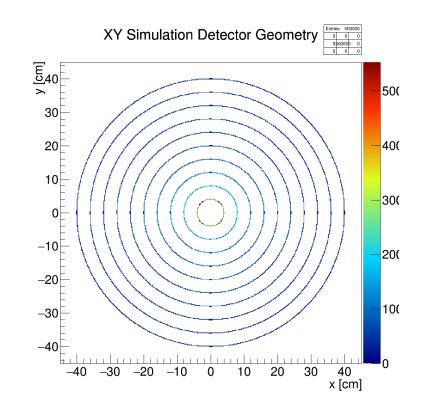
- Tracking proceeds in three main steps: seeding, building, and fitting
- In fitting, hit collection is known: repeatedly apply the basic logic unit
- In building, hit collection is unknown and requires branching to explore many possible candidate hits after propagation



Experimental Setting

Simplified setup

- Detector conditions
 - 10 barrel pixel layers, evenly spaced
 - Hit resolution
 - ➤ σ_{x,y} = 100µm
 - $\succ \sigma_z = 1.0$ mm
 - Constant B-field of 3.8T
 - No scattering/energy loss
- Track conditions
 - Tracks generated with MC simulation uniformly in η,φ (azimuthal angle), and p_T
 - Seeding taken from tracks in simulation



Realistic Setup

Options to add material effects, polygonal geometry:

More realistic setup partially built:

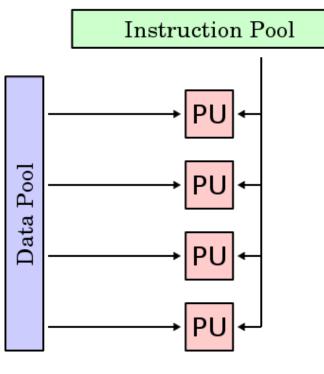
Barrel and Endcap (x86 only)

Selected Parallel Architectures

	(Intel) Xeoni processor			
	Xeon E5- 2620	Xeon Phi 7120P	Tesla K20m	Tesla K40
Cores	6 x 2	61	13	12
Logical Cores	12 x 2	244	2496 CUDA cores	2880
Max clock rate	2.5 GHz	1.333 GHz	706 MHz	745 MHz
GFLOPS (double)	120	1208	1170	1430
SIMD width	64 bytes	128 bytes	Warp of 32	Warp of 32
Memory	~64-384 GB	16 GB	5 GB	12 GB
Memory B/W	42.6 GB/s	352 GB/s	208 GB/s	288 GB/s

Challenges to Parallel Processing

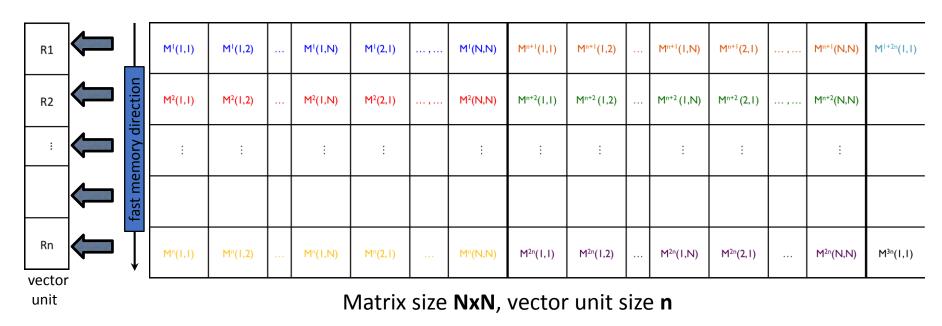
- KF tracking cannot be ported in straightforward way to run in parallel
- Need to exploit two types of parallelism with parallel architectures
- Vectorization
 - Perform the same operation at the same time in lock-step across different data
 - Challenge: branching in track building exploration of multiple track candidates per seed
- Parallelization
 - Perform different tasks at the same time on different pieces of data
 - Challenge: thread balancing splitting the workload evenly is difficult as track occupancy in the detector not uniform on a per event basis



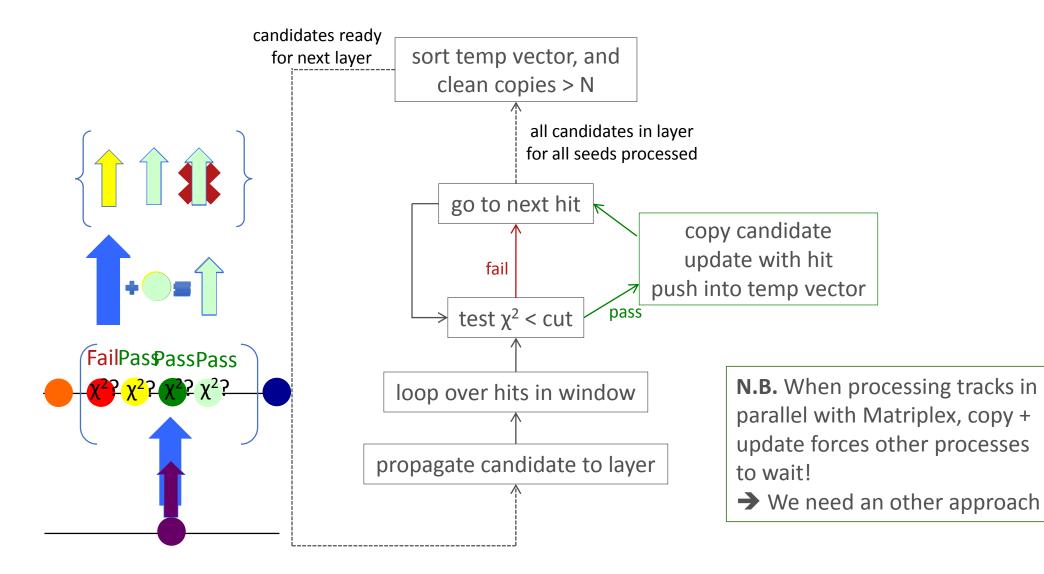
Vectorization

Matriplex

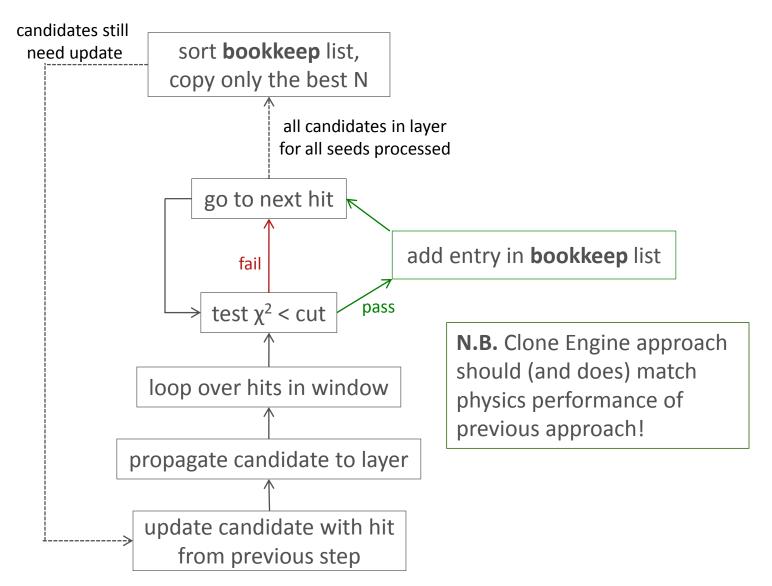
- Matrix operations of KF ideal for vectorized processing: however, requires synchronization of operations
- Arrange data in such a way that it can loaded into the vector units of Xeon and Xeon Phi with *Matriplex*
 - Fill vector units with the same matrix element from different matrices: n matrices working in synch on same operation



Handling Multiple Track Candidates: First Approach

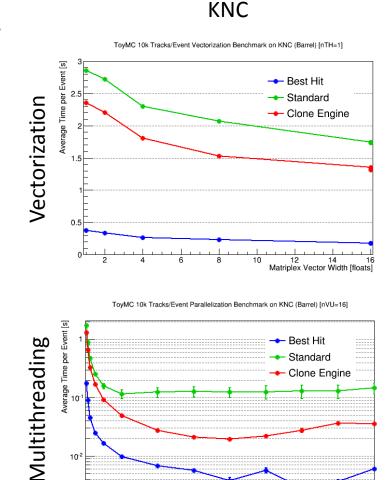


Optimized handling of multiple candidates: "Clone Engine"



Track Building: Sandy Bridge and KNC

- Toy Monte Carlo experiment
 - Simplified geometry & simulated events
 - Similar trends in experiments with realistic geometry & CMSSW events
- Scaling tests with 3 building algorithms
 - Best Hit less work, recovers fewer tracks (only one hit saved per layer, for each seed)
 - Standard & Clone Engine combinatorial, penalized by branching & copying
- Two platforms tested
 - Sandy Bridge (SNB): 8-float vectors, 2x6 cores, 24 hyperthreads
 - Knights Corner (KNC): 16-float vectors, 60+1 cores, 240 HW threads
- Vectorization speedup is limited in all methods
 - Faster by only 40-50% on both platforms
- Multithreading with Intel TBB speedup is good
 - Clone Engine gives best overall results
 - With 24 SNB threads, CE speedup is ~13
 - With 120 KNC threads, CE speedup is ~65

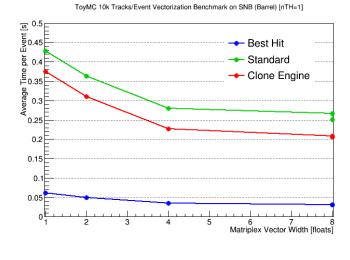


120 140

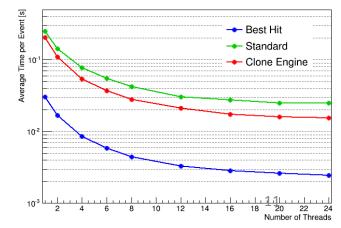
200 220 240

Number of Threads

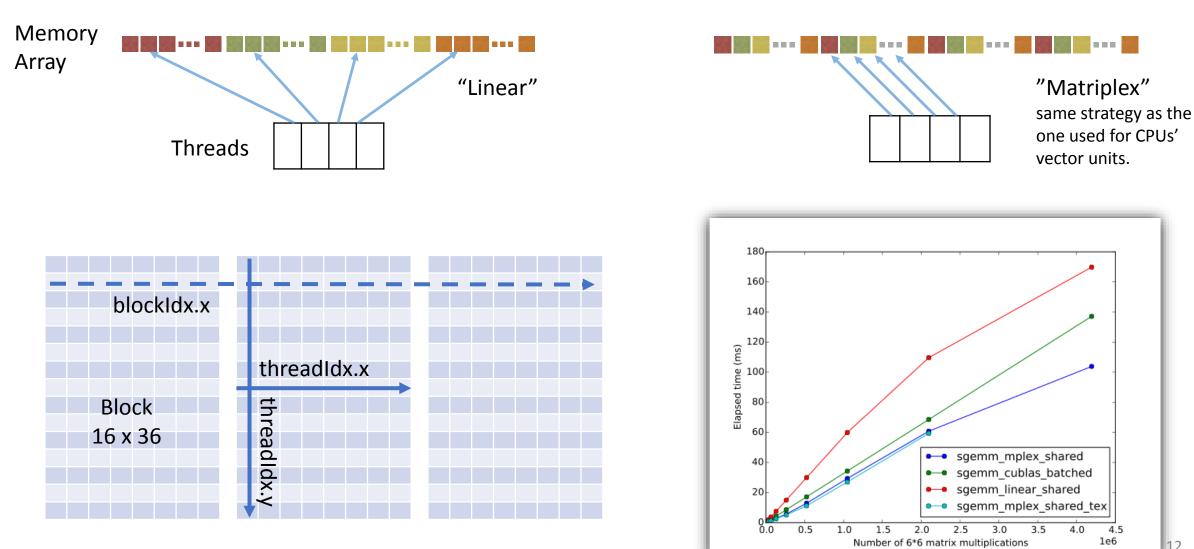
Sandy Bridge



ToyMC 10k Tracks/Event Parallelization Benchmark on SNB (Barrel) [nVU=8]



GPU: Finding a Suitable Memory Representation

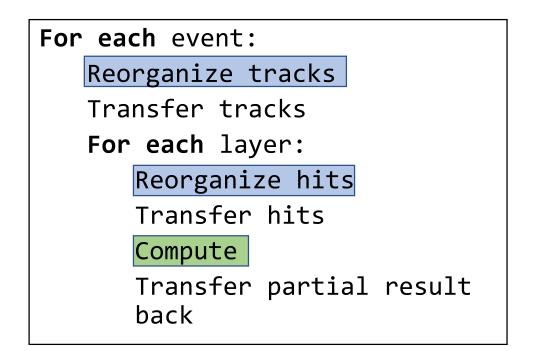


12

GPU Porting Strategy: An Incremental Approach

- Start with fitting:
 - Share a large number of routines with building
 - Simpler: less branching, indirections,
 - → Draw lessons along the way
- Gradually increase complexity
 - "Best Hit": (at most) 1 candidate per seed
 - New issue: Indirections
 - "Combinatorial": multiple candidate per seed
 - New issue: Branching

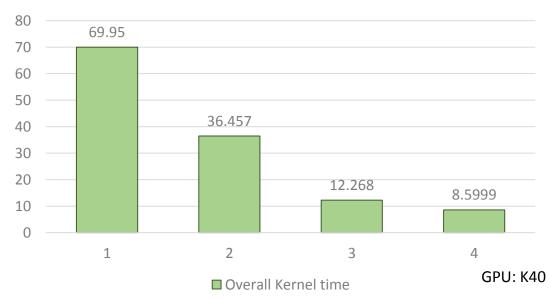
Fitting: Optimizing Individual Events



Propagation & Update Computations

CPU

Reorganizing data to Matriplex Numerous indirections

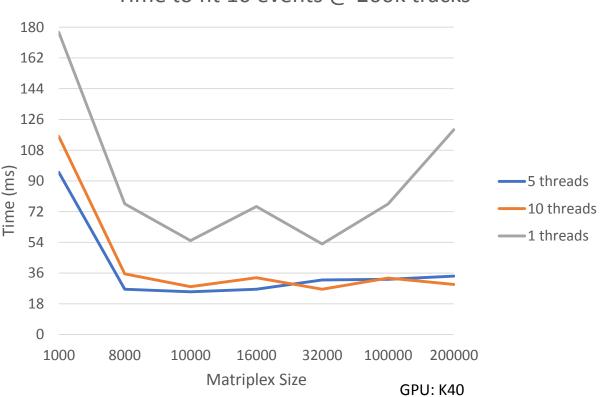


10 events @ 20k tracks Overall Kernel Time (ms)

- 1. Pre-optimization
- 2. Better data access: use read only-cache (const __restrict__)
- 3. Merging kernels (reducing launch overhead)
- 4. Use registers over shared memory

Fitting: Filling up the GPU

- Larger Matriplex size
 - Faster kernels
 - Longer reorganization
- Smaller Matriplex size
 - "Faster" reorganization
- Concurrent events, different streams
 - Individual kernel instances take longer
 - Overall time shorter
- Compromise:
 - Find Matriplex size so that time(reorg + transfer + kernel) is minimum



Time to fit 10 events @ 200k tracks

Track Building: GPU Best Hit

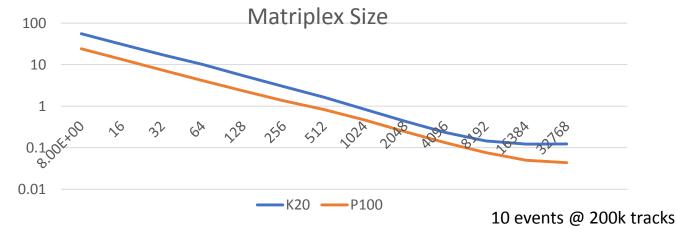
- Parallelization: as in Track Fitting
 - Parallelization: 1 GPU thread per candidate
- Reorganizing on the CPU is not an option for building
 - Frequent reorganizations → very small kernels
 - Numerous reorganizations → no more overlapping possible
- Data Structures
 - Matching CPU and GPU data structures to ease data transfers
 - Later reorganized as Matriplexes on the GPU
 - Static containers directly used on the GPU: Hits, Tracks, ...
 - Object composition forces additional trick for classes at the top of the wrapping hierarchy
 - Keep arrays of sub-objects both on the host and on the device to be able to fill copy sub-objects from the CPU and access them from the GPU.
 - > Data transfer overhead from transferring multiple smaller objects

Track Building: Tuning Parameters

- Usual problem, find t_{min} that satisfies:
 - t_{min} = min f(a, b, c, d)
 - (a) Number of Eta bins (*)
 - (b) Threads per block
 - (c) Matriplex width
 - (d) Number of tracks per event
- "Standard" insight
 - The GPU should be filled with enough threads
 - Even more so with newer GPUs
 - →Computing multiple events concurrently is mandatory

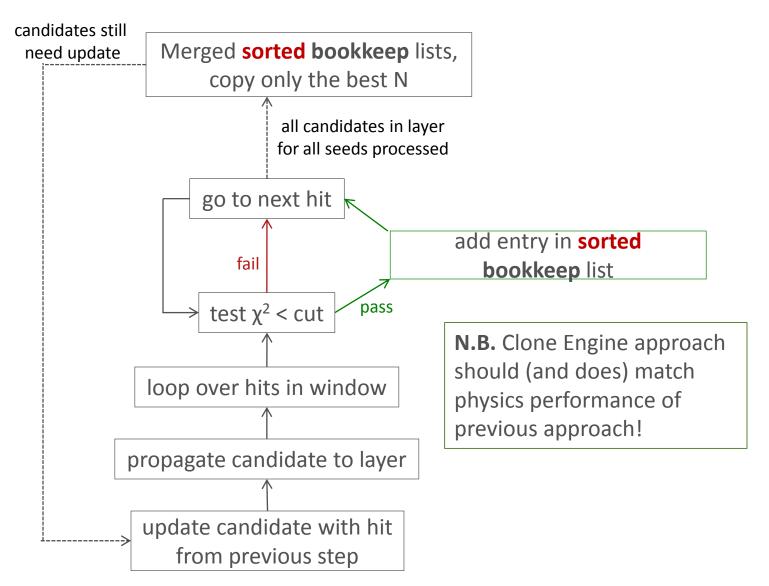


Number of Eta bins

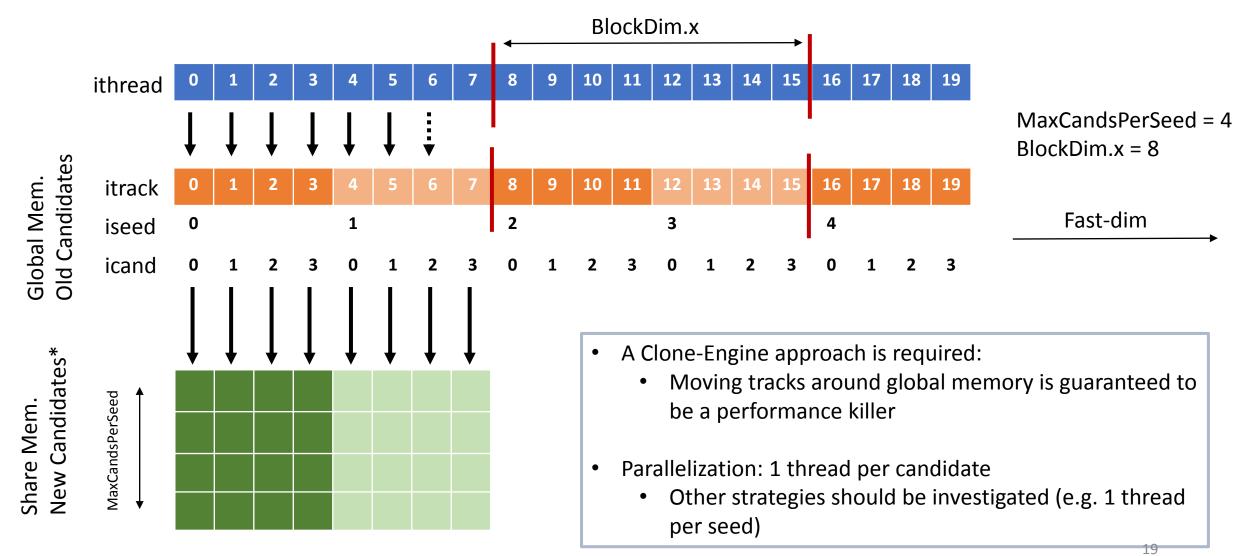


(*) Eta bins: Hits are binned by η to reduced the amount of hits that should be tried for a track

Building with Multiple Candidates: "GPU Clone Engine"



Building with Multiple Candidates

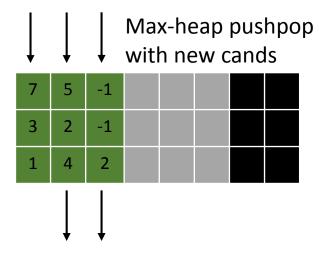


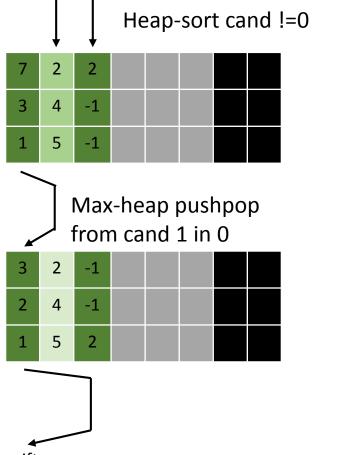
*Potential next-layer candidates, after adding an acceptable hit from the current layer

Sifting a Seed's New Candidates in Shared Memory

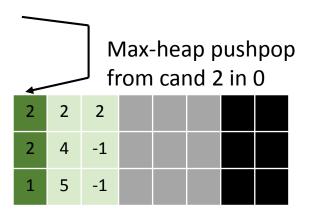
Set to sentinel value

-1	-1	-1			
-1	-1	-1			
-1	-1	-1			

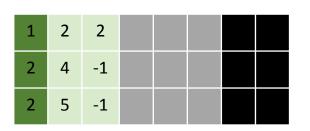




MaxCandsPerSeed = 3 BlockDim.x = 8



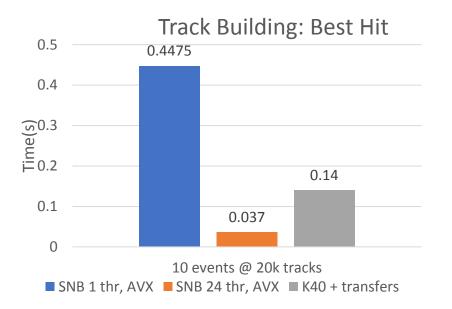
Heap sort Cand 0

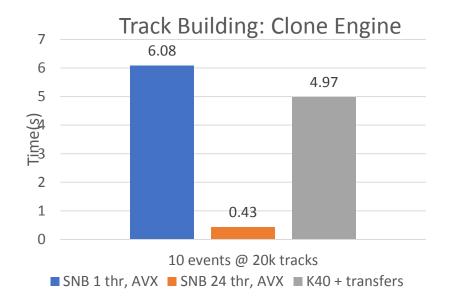


Notes: Possible optimization using a binary tree approach to sift

The integer in each box represents the chi-squared that results from adding a given hit

Track Building: Initial Performance





- 20K tracks per event is not enough to give good performance
- Need to increase the number of events concurrently fed to the GPU by using different streams

- Too many synchronizations
- Sorting's branch predictions
- Idling threads when number of candidates per seed is not maximum
- Transfer account for 46% of the time

Avoiding Code Duplication

- Keeping two code bases in sync is complicated
- Ability to directly address the architecture
 - At least for this kind of study
- Core routines are very similar in C++ and CUDA
- → Template interface
 - Overloaded operators ([], (,,,))
 - Allow for the same memory accesses
- → Separation between "logic" and work decomposition
 - C++ "for" loops vs. CUDA "if (< guard)"

Track Building on GPU: Improvements and Next Steps

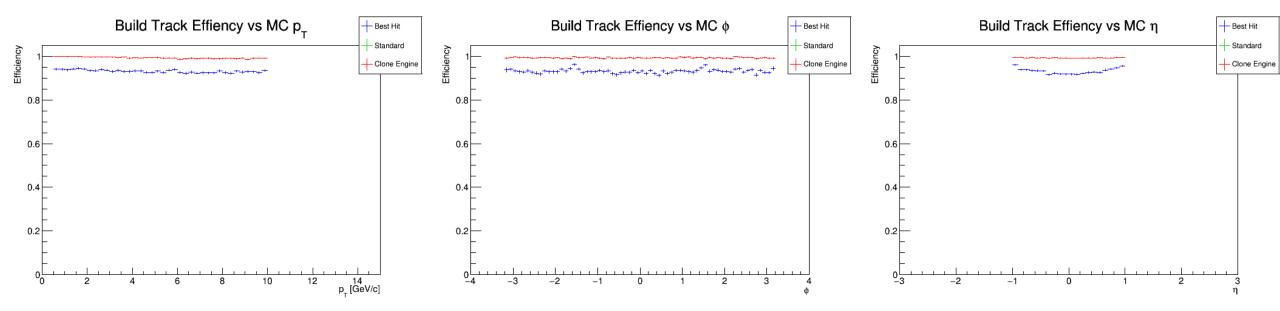
- Stream concurrent events to the GPU
 - Already in place but,
 - Event set-up needs to be moved outside the parallel loop
- Alternative strategies for the clone-engine approach
 - One thread per seed
 - Adaptive strategy depending on the number of candidates per seed
- Move onto newer Pascal GPUs
 - Profiling with Instruction Level GPUs (>= Maxwell)
 - Synchronize only relevant threads, not the full block (>= Pascal)
 - __syncthreads -> sync(...);

Conclusion & Perspectives

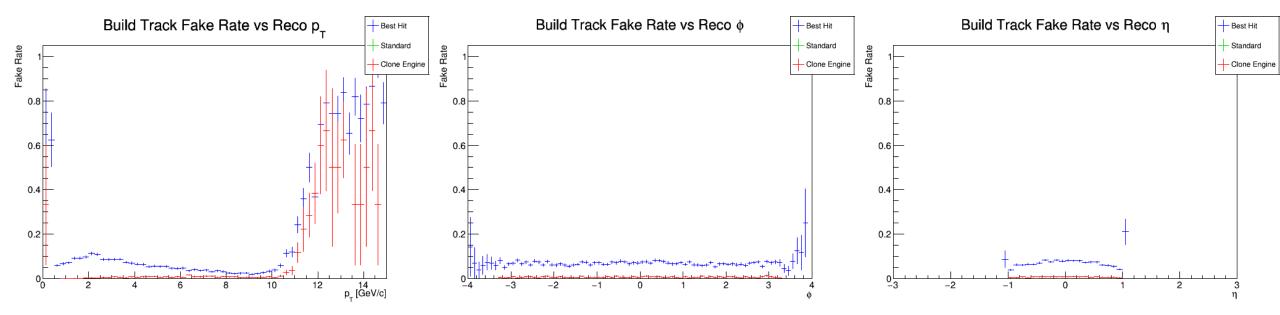
- Track fitting and track building show good performance for both **vectorization** and **parallelization** on **x86** processors (SNB & KNC)
- GPU performances are still behind, particularly in term of \$/event
 - Newer GPUs should alleviate some of the issues
 - Better filling through concurrent streams of events seems crucial
- Lessons learned on one architecture are often valuable to algorithm development on the other one

Backup

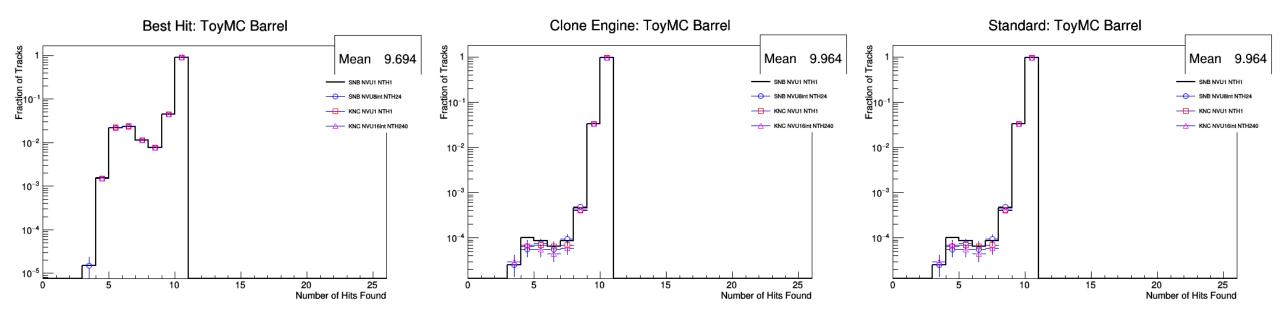
Track Building: Physics Performance – Efficiency



Track Building: Physics Performance – Fake Rate



Track Building: Physics Performance Number of Hits per Track



Pascal Managed Memory

CUDA 6 Code with Unified Memory

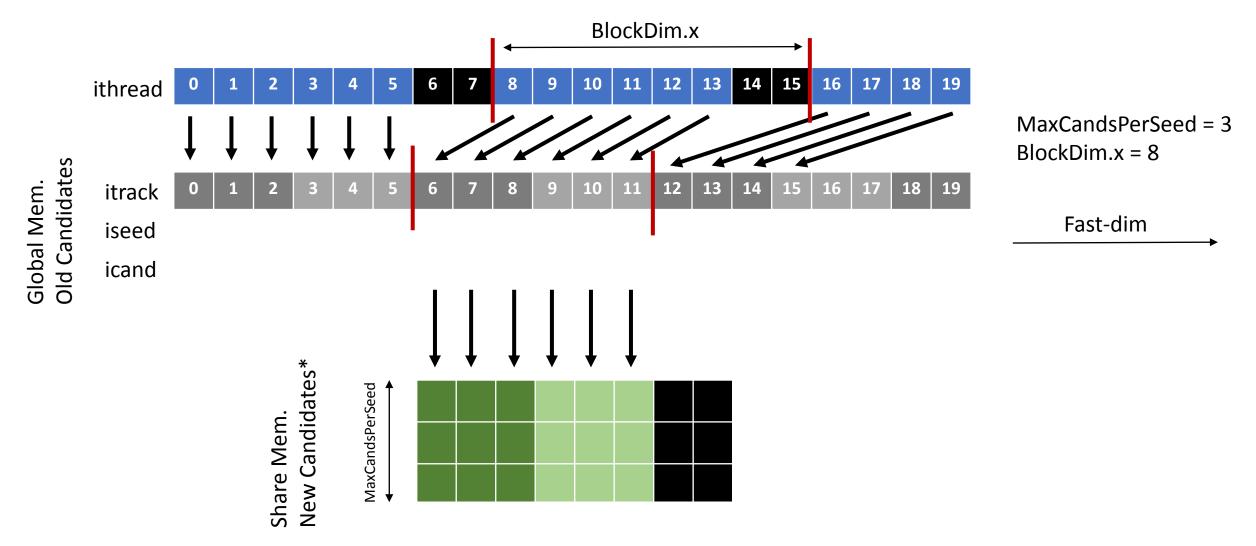
```
void sortfile(FILE *fp, int N) {
void sortfile(FILE *fp, int N) {
                                                  char *data:
  char *data;
                                                  data = (char *)malloc(N);
  cudaMallocManaged(&data, N);
                                                  fread(data, 1, N, fp);
  fread(data, 1, N, fp);
                                                  qsort<<<...>>>(data,N,1,compare);
  gsort<<<...>>>(data,N,1,compare);
                                                  cudaDeviceSynchronize();
  cudaDeviceSynchronize();
                                                  use_data(data);
 use_data(data);
  cudaFree(data);
                                                  free(data);
                                                               *with operating system support
```

 But it is not just for beginners; Unified Memory also makes complex data structures and C++ classes much easier to use on the GPU. On systems that support Unified Memory with the default system allocator, any hierarchical or nested data structure can automatically be accessed from any processor in the system. With GP100, applications can operate out-of-core on data sets that are larger than the total memory size of the system.

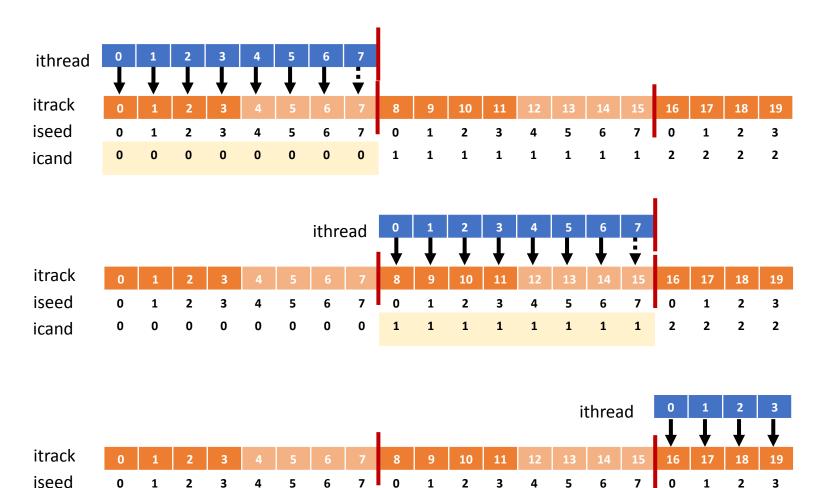
Pascal Unified Memory*

STL?

Mapping: Threads, Tracks, CandList



Clone Engine: Different Strategy



icand

- One thread per seed
 - Less idling threads due to low numbers of candidates per seed
 - Breaks the Matriplex aligned memory accesses
 - Unless 32 candidates per seed
 - Or significant padding
 - Less threads per events

Avoiding Code Duplication ...while keeping the C++ code clean

- STL is still not available in CUDA code
- C-arrays (T*) are the main container in CUDA code (even if encapsulated)
- E.g. std::vector are hard to adapt
 - Resize(), push_back(),...
- → Allocate larger arrays
- → Many cudaMemcpys to transfer complex, irregular data structure
 - E.g. vector<vector<T>>

Realistic Geometry with CMSSW events (x86 only)

- Single muon gun
- t-tbar + pileup, where the mean pileup per event is 35
- Phase0 geometry
- Efficiency and nHits/track for CMS events
 - comparable to CMS for this particular set of seeds/tracks