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Motivations for replacing the CMS
Tracking Detector at the HL -LHC

A Counter existing radiation damage/ cope with increased fluxes.

A Extended tracking acceptance to |—| < 4.

A Reduced material in the tracking volume.

A Maintain high track reconstruction efficiency under increased pile -up conditions.

A Provide limited information to the Level 1 (L1) hardware trigger system to avoid raising
trigger thresholds (and physics).

A Average number of inelastic collisions per bunch crossing ( pileup) will increase up
to 140-200!



Tracking Trigger Requirements
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CMS Phase-2 Outer Tracker

A Outer Tracker provides tracking information through modules of two closely space silicon sensors.
ACharged particles produce pairs of hits (a oO0stub

A Relative position of the two hits determines the track p+ (assuming beam -line origin):
A On-detector electronics only transmit off stubs consistent with pr>2 -3 GeV/c.
A Reduces rate by factor ~ 10.

fail

§

“stub“\>/\ pass
by by ey HHH
|||| 1+4 mmI OF”

r [mm]

—— e — e — ——

:

.
]

Outer Tracker Layout (left):
. Blue: modules with a pixel and strip layer
500 oo w0 e e ] Red: modules with two strip layers

z [mm]

§

=

KN
|

|

|

|

T

06/03/2017 Alexander David Morton 6



A Time-Multiplexed
Track Trigger

A One of three proposals being investigated in CMS.

A Concept:
A Scalable, configurable, and redundant system architecture.

A Track Finding Processor (TFP) implemented using FPGAS:
A Off the shelf components.
A Flexibility to modify tracking algorithm based on LHC conditions or new ideas

A Fully Time-Multiplexed Design.

A Constraints:
A How the tracker is cabled to the Data, Trigger and Control (DTC) system.
A Number of high speed links available for DTC and Track Processing boards.
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Time-Multiplexing Crash Course

A N identical processors, each processor processing 1/N events.

A Advantages:
A Fully pipelined (no sideways connections ).
A Synchronisation required only within each node.
A Allows demonstration of final system with one TFP.

A A TFP failure results in loss of 1 bunch crossing in N instead
of loss of physical region.

A Spare TFPs in final system allow for online recovery in case
of failure or parasitic testing of new algorithms during LHC
runtime.

A Time-Multiplexing is successfully used in current CMS trigger
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System Overview

A Tracker detector is ~ divided into U octants.
A TrackFi nding oprocessing octantsé are offset by 1

odetector octantso.
AoOProcessing octantdé never needs stubs from mor

to reconstruct tracks.
A Perform track finding independently in each sector in parallel.

Detector Octant 1 : z+, z- (32 DTCs)
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Track FInding Processor

A Track Finding Processor divided into four self -contained logical blocks:
A Geometric Processor (GP): Pre -processes stubs and subdivides detector octants into sectors.
A Hough Transform (HT): Highly parallelised initial coarse track finding inther -0 plane.
A Track Fitter (TF): Cleans tracks and precisely fits helix parameters and removes fake tracks.
A Duplicate Removal (DP): Final pass filter to remove duplicates generated by the HT.

Detector Octant 1 (right) / \
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Detector Octant 2 (left)
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Geometric Processor

Detector Octant 1 (right)

Detector Octant 2 (left)
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Geometric Processor
Divide et impera

A Detector is divided into U octants, inspired by the proposed cabling scheme in U octants.
A Each octant is subdivided into 2 U x 18E sectors.
A Independent track -finding occurs in parallel in each processing sector
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Geometric Processor
How It works

A Geometric Processor:
A Assigns stubs to sectors and transmits from each sector along dedicated link to next stage.
A Ensure tracks found are consistent with lineinr -z plane.
A Duplicates stubs if consistent with more than one sector due to track curvature.
A Formats stub data for more convenient use downstream.

A Pre-processing and assignment:
A Converts 48 -bit DTC stubs into a 64 -bit extended format.
A Assign stubs to geometric sub -sectors.

A Routing:
A 72 inputs (one per DTC) routed to any of 36 outputs (one per sector).
A Happens in three steps:
A rough Esorting (6 HBsiomrs)i ng f(i3sodng @ Bins). b
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Hough Transform
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Hough Transform
Theory

A Use Hough Transform (HT) for primary fast search for tracksinr -U plane.

A Points in real space = lines in Hough Space/Points in Hough space = real space
line.

A For high pcharged tracks in uniform magnetic field along the z (beam -line) axis:
A Trajectory inr-U plane e circular within the tracking volume.
A (Assuming no energy loss).

A Stub radius | i U Y wisiused as:
A In Hough Space, line gradients are given by | 6 always positive.

A Transform to utilise largerphase -space B fewer fake/ duplicat e



Hough Transform

Algorithm

. Calculate %o (%oat i )foreach |

. Fill the stub into appropriate cells in a 32x64 array

in | X %o

.Ignore | values inconsistent
information (rough p;estimate).

. Define cells with stubs in at least 4 or 5 layers as
track candidates.

I. 4 layer threshold used to cope with barrel -
endcap transition region or dead layers

Al gori t hmos
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