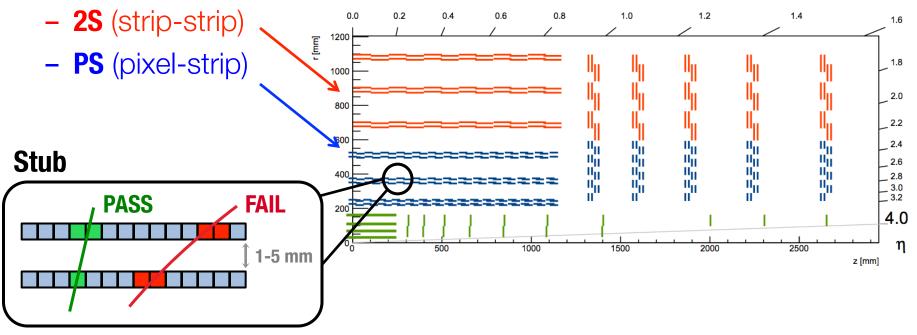


Tracklet Approach to Level-1 Tracking for CMS at the HL-LHC

Margaret Zientek (Cornell University) On behalf of the CMS Collaboration

CTD/WIT – March 2017

Introduction

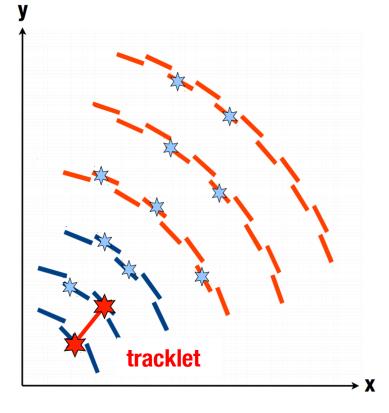

- High Luminosity LHC (HL-LHC) upgrade planned for 2025
 - Peak luminosity 7.5 x 10³⁴ cm⁻²s⁻¹
 - Average pileup (PU) of 140-200

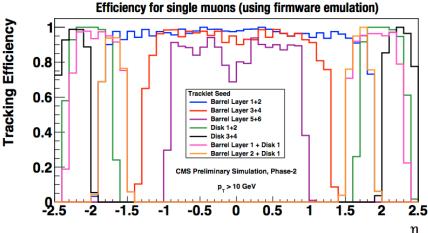
Huge amount of data \rightarrow challenging environment for CMS

- New CMS tracker will have triggering capability \rightarrow L1 Tracking
- L1 (hardware trigger) tracking helps deal with amount of data
 - Enhanced lepton ID, vertexing, track isolation
- Three CMS approaches to L1 Tracking: AM, TMTT, Tracklet
- This presentation: Tracklet approach
 - Overview of the algorithm
 - Performance results from simulations
 - Firmware implementation & hardware demonstrator results
 - Projections for full system

CMS Tracker of the HL-LHC

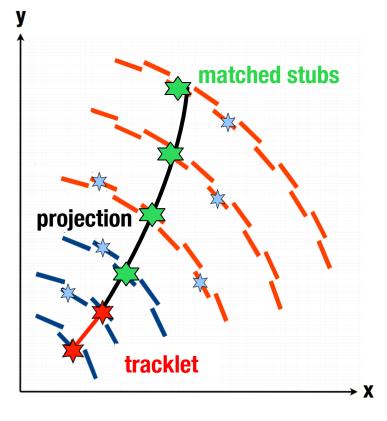
- Tracklet results with flat barrel (tech. proposal) geometry
- Two types of p_T modules:

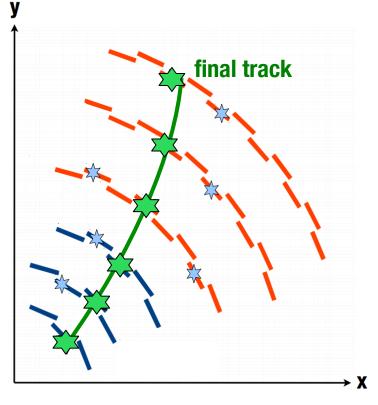

- Correlated pair of clusters
- Consistent with $p_T > 2$ GeV tracks

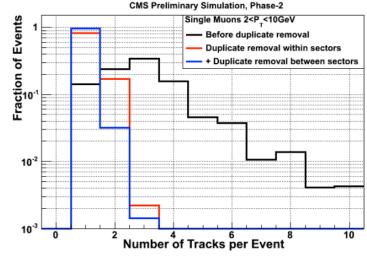

Introduction to the Tracklet Approach

- Minimal hardware system based on commercial FPGAs
 - FPGAs are ideal for fast tracking...
 - Increasing capabilities
 - Programming flexibility
- Tracklet algorithm
 - Road search algorithm
 - Few (simple) calculations
 - **Pipelined algorithm** works naturally with FPGAs
 - **Parallelized** processing (in space & time multiplexing)
 - Operates at a **fixed latency** \rightarrow **truncate** if needed

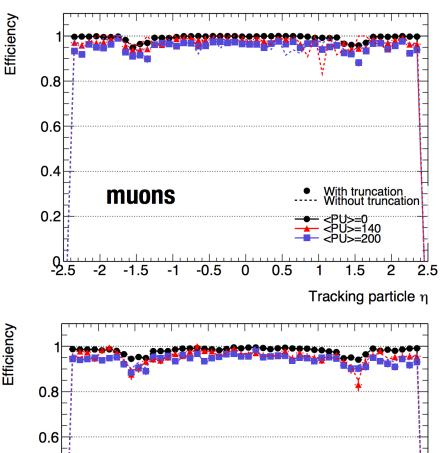
Seeding

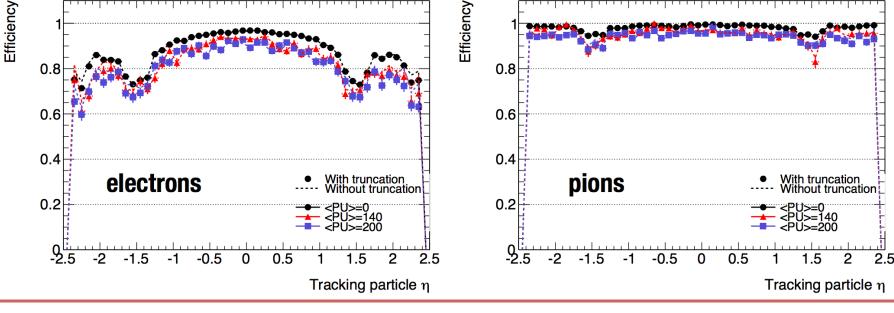

- Seed by forming a tracklet from pairs of stubs in adjacent layers (or disks)
 - Initial track parameters
 from stubs + IP constraint
 - Tracklets must be consistent with $p_T > 2 \text{ GeV}, |z_0| < 15 \text{ cm}$
- Seed in multiple layer combinations for good coverage & redundancy
 - Barrel: L1+L2, L3+L4, L5+L6
 - Disk: **D1+D2, D3+D4**
 - Overlap: L1+D1, L2+D1
 - Adaptable


Project & Match Stubs


- Use tracklet to **project** to other layers and the disks
- Project both inwards and outwards
- All projections done simultaneously in parallel
- Look for matched stubs within a window around the projected track
- Stub with smallest residual kept for fitting stage

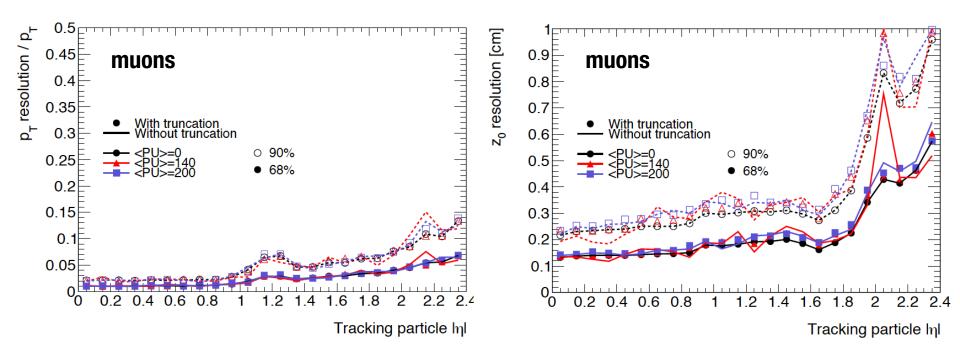
Fit & Duplicate Removal


- Use original and matched stubs
 - Require at least 4 stubs for valid track
- Refit to get the final track
- Linearized χ^2 fit
- Gives final track parameters
 - p_T, η, φ₀, z₀
 - Optional d₀ (5-parameter fit)
- Given track may be found many times (multiple seeding combinations)
- Remove duplicate tracks tracks that have fewer than 3 unique stubs



Tracking Performance

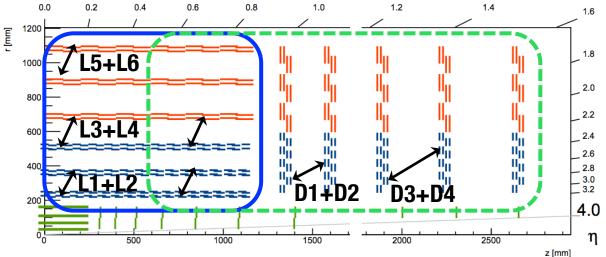
- Efficiency as a function of η
- For a single object (e,μ,π), high efficiency achieved
- Effect of truncation is minimal


7 March 2017

d/wit

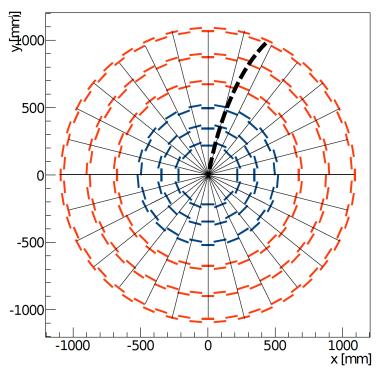
Tracking Performance

• Track parameter resolutions


- Already good enough resolution for trigger
- Known degradation from using too few bins in certain points of the calculation \rightarrow can be corrected

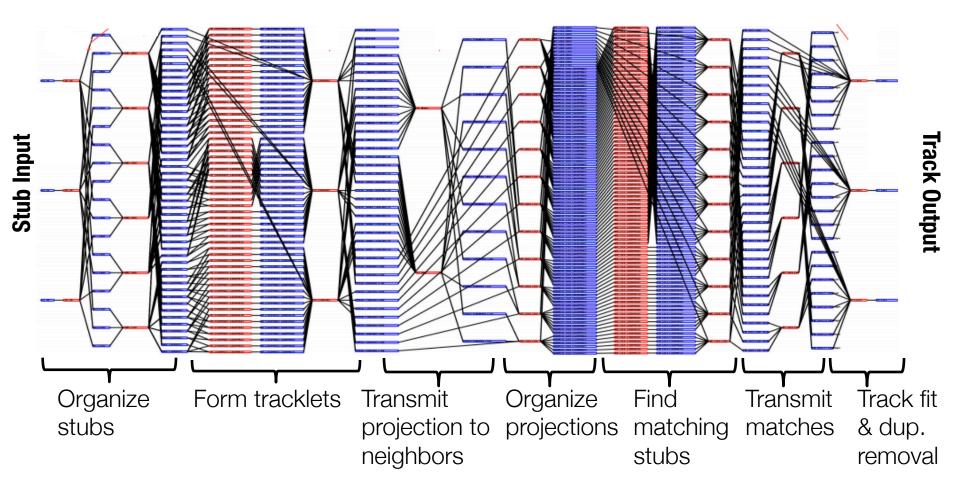
Firmware Overview

- Pipelined algorithm which operates with a fixed latency
 - Few hand-optimized processing modules
 - Processing modules read from, and write to, memories (BRAMs)
 - Wiring of modules & memories automated via python scripts
 - Each processing step has a fixed time to produce its first output
 - Pipelined design produces output for new event every TMUX*25ns
 - After that, move to next event \rightarrow truncate if needed


Currently implemented (+η) as two FW projects:

- Half barrel
- Hybrid + disks

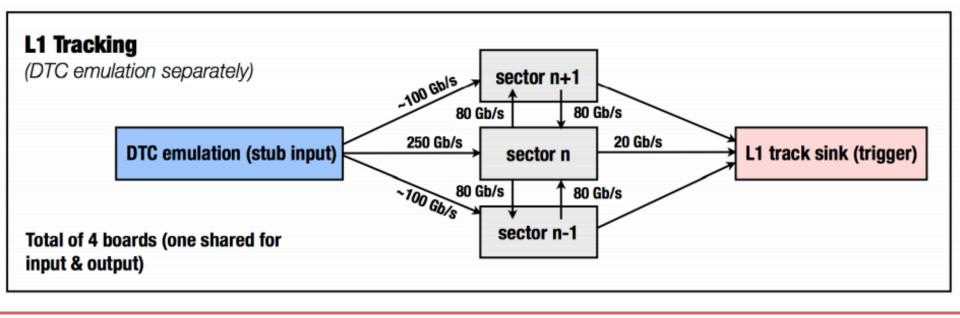
Hardware Configuration


- Deal with combinatorics by **parallel data processing**
- **Time multiplex** by x4-8 (*Adaptable*)
 - TMUX=6 \rightarrow new event every 150 ns
- Divide detector into **φ sectors** (Adaptable)
 - 28 sectors → 2 GeV track spans max two sectors
 - Each sector is a processing board
- Tracklets are formed within a sector
 - Can project to its adjacent sectors
 - Tracklet then needs to be sent to neighbor for stub matching \rightarrow need inter-board communication

Project Overview

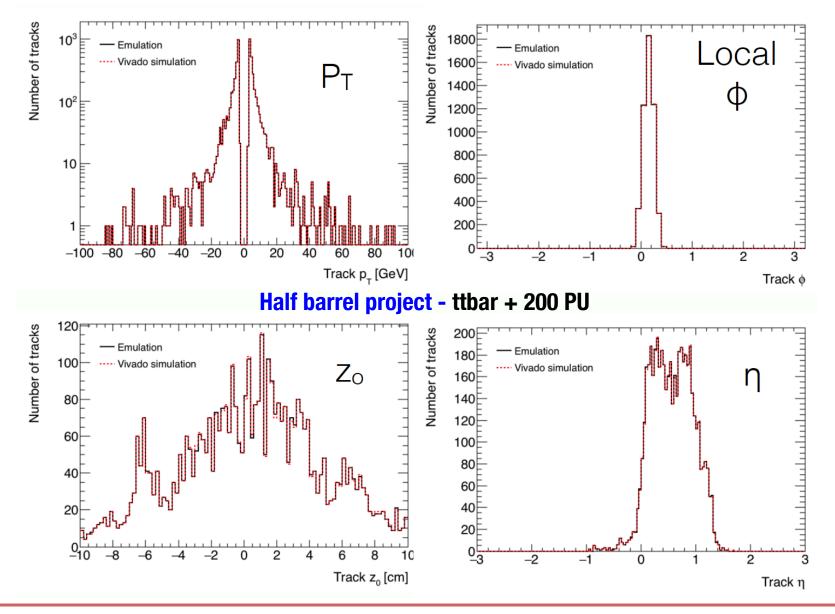
Memories Processing modules

8 processing + 2 transmission steps used to implement algorithm


Demonstrator

Test stand made of **4 CTP7s** (with **Virtex-7 690T FPGA**) and **AMC13** card for clock/synchronization

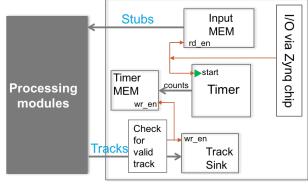
- Used for full scale testing (including inter-board communication)
- Validate performance v. emulation
- Latency measurements



CTP7 Boards from Univ. of Wisconsin Currently used in CMS L1 trigger

Performance v. Emulation

Single muon : 100% agreement ttbar+200 PU: >99% agreement



M. Zientek

CTD/WIT

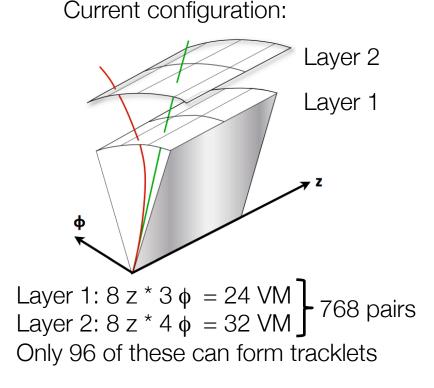
Latency Measurement & Model

- L1 trigger decision at 12.5 μ s goal: tracks before 4 μ s
- A full end-to-end latency measurement done with clock counter
 - 240 MHz clock (same as processing clock)
 - Implemented on DTC emulator board
 - First track out latency: 800 clks = 3.33 μ s
 - Verified latency for
 - Half barrel and hybrid + disk projects
 - Single muon and ttbar+200PU events sector
- Compare this to latency model
 - Each processing step has a fixed latency \rightarrow predict latency
 - Model latency: 3.35 µs which agrees well with measured one (3 clks or 0.38% difference)

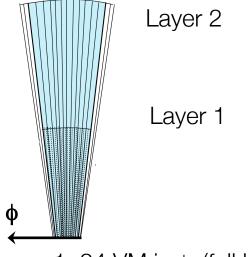
DTC Emulator/Track Sink

CTD/WIT

Sector board

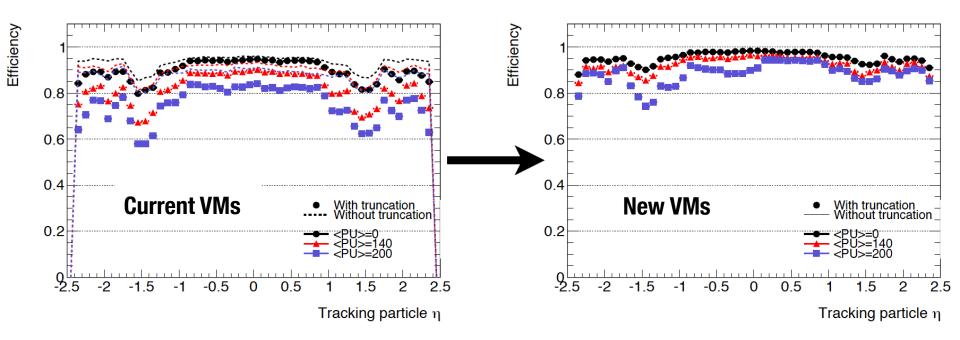

Improvements to the Latency

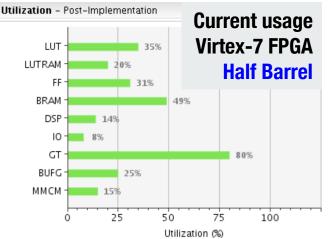
- L1 trigger decision at 12.5 μ s goal: tracks before 4 μ s
- Current latency: tracks at 3.33 μ s \rightarrow **Can we get faster?** Yes... there are some very obvious candidates to reduce latency
- Algorithmic improvements:
 - Remove redundant "layer router" (~150 ns)
 - Considerable latency from inter-board communication (~1µs)
 - Optimize the transmission protocol
 - Duplicate data from neighboring sector → remove sector-tosector communication in projection and match finding steps
- General improvements:
 - Run with higher clock speed
 - Different clock domains for different processing modules


Progress Towards a Full System

Better Load Balancing

- Main challenge for tracklet approach: combinatorics when forming tracklets & matching tracklet projections to stubs
- Subdivide ϕ sector into Virtual Modules (VMs) for parallel processing
- Future: better load balancing by using thinner (in $\boldsymbol{\varphi})$ VMs

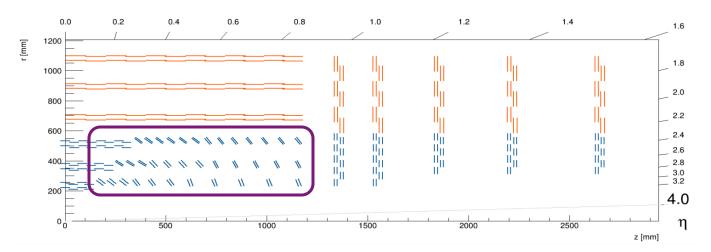

Future configuration:


Layer 1: 24 VM in ϕ (full length in z) Layer 2: 16 VM in ϕ (full length in z) Total of 120 pairs can form tracklets

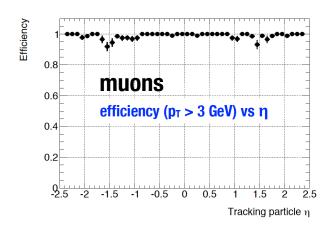
Tracking in Jets (ttbar)

- Compared to current VMs, improved load balancing (the thinner ϕ partitions)
 - No additional resources
 - Significant performance improvement for tracks in jets
 - Minimizes the impact of truncation

FPGA Resource Usage Projections



- Goal: One processing board for a "full sector" (one ϕ sector, full η range)
- Given current resource usage \rightarrow estimate what is needed for processing a full sector
- Assume 25Gbps links needed from DTC \rightarrow Compare with resources of Ultrascale+ FPGAs


	LUT Logic	LUT Memory	BRAM	DSP
Full sector	279733	151191	2721.5	1818
Virtex-7	65%	87%	185%	51%
VU3P	32%	81%	85%	80%
\rightarrow VU5P	21%	53%	58%	52%
VU7P	16%	40%	42%	40%
VU9P	11%	27%	28%	27%
VU11P	10%	27%	29%	20%
VU13P	7%	20%	22%	15%

Moving to Tilted Barrel Geometry

• Tracker as it actually will be built

- Ported floating-point and bitwise emulations to tilted barrel geometry
 - Minor changes in geometric constraints
 - Firmware will be easy to adapt
 - Efficiencies remain high
 - z₀ resolution slightly worsens in transition region

Conclusions

- L1 tracking crucial to HL-LHC physics goals
- Tracklet approach to L1 tracking
 - Road search algorithm using **commercial FPGAs**
 - Fully implemented as floating-point & integer-based algorithm
- Demonstrated feasibility of the Tracklet approach
 - Half barrel & hybrid + disks projects running on Virtex-7 FPGAs
 - Excellent agreement (>99%) between firmware & emulation
 - Time from stubs in to tracks out: **3.33** $\mu \textbf{s}$ latency
 - Design seems **scalable** to UltraScale+ FPGAs
- Ongoing improvements:
 - Reduce latency
 - Better load balancing in the VMs by changing partitioning
 - Migrate to tilted barrel geometry

BACKUP

TMUX 6, 240 MHz CLK

Step	Processing time (ns)	Latency (clk)	Latency (ns)	Transmission Latency (ns)	Total (ns)
Input link	0.0	1	4.2	316.7	320.8
Layer Router	150.0	1	4.2	0.0	154.2
VM Router	150.0	4	16.7	0.0	166.7
Tracklet Engine	150.0	5	20.8	0.0	170.8
Tracklet Calculator	150.0	43	179.2	0.0	329.2
Projection Transceiver	150.0	13	54.2	316.7	520.8
Projection Routing	150.0	5	20.8	0.0	170.8
Match Engine	150.0	6	25.0	0.0	175.0
Match Calculator	150.0	16	66.7	0.0	216.7
Match Transceiver	150.0	12	50.0	316.7	516.7
Track Fit	150.0	26	108.3	0.0	258.3
Duplicate Removal	0.0	6	25.0	0.0	25.0
Track Link	0.0	1	4.2	316.7	320.8
Total	1500.0	139	579.2	1266.7	3345.8

M. Zientek

CTD/WIT

7 March 2017

TMUX 6, 240 MHz CLK

Step	Processing time (ns)	Latency (clk)	Latency (ns)	Transmission Latency (ns)	Total (ns)
Input link	0.0	1	4.2	316.7	320.8
Layer Router	150.0	1	4.2	0.0	154.2
VM Router	150.0	4	16.7	0.0	166.7
Tracklet Engine	150.0	5	20.8	0.0	170.8
Tracklet Calculator	150.0	43	179.2	0.0	329.2
Projection Transceiver	150.0	13	54.2	316.7	520.8
Projection Routing	150.0	5	20.8	00 Overhead in each	170.8
Match Engine	150.0	6	25.0	processing modu	2
Match Calculator	150.0	16	66.7	0.0	216.7
Match Transceiver	150.0	12	50.0	316.7	516.7
Track Fit	150.0	26	108.3	0.0	258.3
Duplicate Removal	0.0	6	25.0	0.0	25.0
Track Link	0.0	1	4.2	316.7	320.8
Total	1500.0	139	579.2	1266.7	3345.8

M. Zientek

CTD/WIT

7 March 2017

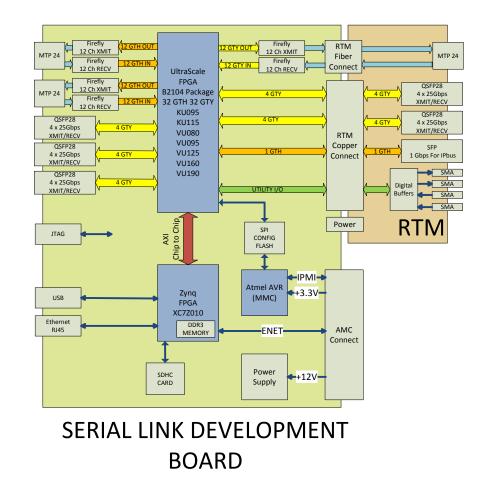
TMUX 6, 240 MHz CLK

Step	Processing time (ns)	Latency (clk)	Latency (ns)	Transmission Latency (ns)	Total (ns)
Input link	0.0	1	4.2	316.7	320.8
Layer Router	150.0	1	4.2	0.0	154.2
VM Router	150.0	4	16.7	0.0	166.7
Tracklet Engine	150.0	5	20.8	0.0	170.8
Tracklet Calculator	150.0	43	179.2	0.0	329.2
Projection Transceiver	150.0	Processing	g time of ead	ch	520.8
Projection Routing	150.0		efore moving vent (TMUX		170.8
Match Engine	150.0			(= 0)	175.0
Match Calculator	150.0	16	66.7	0.0	216.7
Match Transceiver	150.0	12	50.0	316.7	516.7
Track Fit	150.0	26	108.3	0.0	258.3
Duplicate Removal	0.0	6	25.0	0.0	25.0
Track Link	0.0	1	4.2	316.7	320.8
Total	1500.0	139	579.2	1266.7	3345.8
				Estima	ited Total Latency

M. Zientek

CTD/WIT

7 March 2017


TMUX 6, 240 MHz CLK

Step	Processing time (ns)	Latency (clk)	Latency (ns)	Transmission Latency (ns)	Total (ns)		
Input link	0.0	1	4.2	316.7	320.8		
Layer Router	150.0	1	4.2	0.0	154.2		
VM Router	150.0	4	16.7	0.0	166.7		
Tracklet Engine	150.0	5	20.8	0.0	170.8		
	TrInter-board communication latency:0.0329.2• Transmission protocol for stub inputs,						
Pr projections	s, matches and t	track outputs		316.7	520.8		
Pr • 76 clk (240)MHz) measured	d with ChipS	cope	0.0	170.8		
Match Engine	150.0	6	25.0	0.0	175.0		
Match Calculator	150.0	16	66.7	0.0	216.7		
Match Transceiver	150.0	12	50.0	316.7	516.7		
Track Fit	150.0	26	108.3	0.0	258.3		
Duplicate Removal	0.0	6	25.0	0.0	25.0		
Track Link	0.0	1	4.2	316.7	320.8		
Total	1500.0	139	579.2	1266.7	3345.8		
Estimated Total Latency							

CTD/WIT

Prototype Board for High Speed Links

- Explore different 25Gbps technologies
 - Links
 - Connectors
 - Layout
 - Fiber RTM
 - Copper RTM
- Ultrascale FPGA
 - KU115 for processing
 - VU080 for I/O capabilities
- Based on existing g-2 project
- Board is in design now

