Weakly supervised classifiers learning from data and proportions

L. Dery (Stanford), B. Nachman (LBNL), <u>F. Rubbo</u> (SLAC), A. Schwartzman (SLAC)

LHC detectors as cameras

SLAC

The LHC experiments are O(100) Megapixel 3D fast cameras —> High resolution "pictures" of proton-proton collisions.

E.g. Jets are recorded as densely packed tracks and calorimeter "images".

Broad effort aiming at outperforming Physics-motivated feature extraction by using low-level inputs (e.g. calorimeter "pixels") for ML algorithms.

Jet classification example

Jet classification example

SLAC

Learning from simulation vs learning from data

 Modeling of multi-dimensional soft QCD features (e.g. n_{track}, w_{track}) is challenging for MC.

<u>1405.6583</u>

 Expect further strain at higher dimensionality (e.g. images with thousands of pixels!)

Learn directly from unlabeled data!

Weakly supervised classifier trained without using labels

supervised classifier

Traditional full supervision

Weak supervision

SLAC

unlabeled training data

$$f_{\mathrm{weak}} = \mathrm{argmin}_{f':\mathbb{R}^n \to [0,1]} \ell \left(\sum_{i=1}^N \frac{f'(x_i)}{N} \left(y \right) \right)$$

average composition for each barrel

unlabeled data sample A

$$h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$$

unlabeled data sample B

$$h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$$

 Given two independent unlabeled data samples, and the corresponding proportion of signal, we can extract the signal and background distributions. unlabeled data sample A

signal background

unlabeled data sample B

$$h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$$

$$h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$$

- Given two independent unlabeled data samples, and the corresponding proportion of signal, we can extract the signal and background distributions.
- —> build Likelihood Ratio discriminant.

- The analytic approach requires binning and becomes quickly unmanageable as the feature space grows.
- ML approach directly looks for discriminant, without extracting explicitly n-dimensional feature distributions for S and B.

$$f_{\mathrm{full}} = \mathrm{argmin}_{f':\mathbb{R}^n o \{0,1\}} \sum_{i=1}^N \ell\left(f'(x_i) - t_i
ight)$$

$$f_{\mathrm{weak}} = \mathrm{argmin}_{f':\mathbb{R}^n \to [0,1]} \ell \left(\sum_{i=1}^N \frac{f'(x_i)}{N} - y \right)$$

Weak supervision - q/g tagging

Conclusion

 Weak supervision is a new paradigm the class proportions in high-level observables in order to use unlabeled data to extract discriminating information from poorly modeled or unknown low-level observables.

References

- Jet-Images: Computer Vision Inspired Techniques for Jet Tagging - https://arxiv.org/abs/1407.5675
- Jet-Images Deep Learning Edition https://arxiv.org/abs/
 1511.05190
- Light-quark and gluon jet discrimination in pp collisions at √s=7 TeV with the ATLAS detector - https://arxiv.org/abs/ 1405.6583
- Weakly Supervised Classification in High Energy Physics -https://arxiv.org/abs/1702.00414

Weak supervision

- Weak supervision allows training directly on data
- Learns only <u>real</u> features, from being exposed to discriminant features in data.

Same performance as/ ideal classifier, trained on labeled data

