Bivariate normal distribution for finding inliers in Hough space for a Time Projection Chamber

Amir Noorì Shirazi

Siegen University

Connecting the Dots
March 2017
Orsay

Bundesministerium für Bildung und Forschung

- International Linear Collider (ILC): Collision between $\mathrm{e}^{+} \mathrm{e}^{-}$with cms energy $500 \mathrm{GeV}-1 \mathrm{TeV}$
> International Large Detector (ILD): A multi purpose detector fo ILC
, Time Projection Chamber (TPC): The main tracker layout. A charged particle traversing the gas volume the TPC parallel to the end plate ionizes the gas and produces primary electrons.

2 Drifting primary electrons toward the end plate and using gas amplification and readout system for detecting them
, GEM or Micromegas + pad readout

- Micromegas + pixelated readout
, Continuous tracking with many hits.

, Timepix:

, Number of pixels:
, Pixel size:
256×256 pixels
Pixel size. $55 \times 55 \quad \mu \mathrm{~m}^{2}$
InGrid:
, Micromegas on top of a Timepix chip

- Mesh holes aligned with pixels of the chip: single e-measurement
- Many hits per track's length ≈ 10 hits per mm
, Every 8 InGrid chips are aligned in an Octoboard
- Using the unit of the Octoboard as a segment of the track calling tracklet

Hough Transform

- Bin with maximum entires returns $\varphi_{H T}$ and $\rho_{H T}$
, $\rho_{H T}=x \cos \left(\varphi_{H T}\right)+y \sin \left(\varphi_{H T}\right)$
> $d_{0}=\rho_{H T}$
- $\varphi_{\text {track }}=\varphi_{H T}-\frac{\pi}{2}$

$\rho=x \cos (\Phi)+y \sin (\Phi)$

08/03/17

Hough Transform

- Because of the diffusion, some lines of hits pass through other bins around the bin with maximum entries.
, Transverse resolution (σ_{D}): resolution of the track in \mathbf{X} and \mathbf{Y} direction
, Longitudinal resolution $\left(\sigma_{\mathrm{L}}\right)$: resolution of the track in \mathbf{Z} direction

> Calculating resolution of the track in Hough space
, Using Bivariate Normal Distribution for vicinity of the bin with maximum entries

Diffusion and Covariance

Diffusion and covariance matrix:
> XY_Plane:
, Transverse resolution:

$$
\left[\begin{array}{cc}
\sigma_{\rho}^{2} & \sigma_{\varphi \varphi} \\
\sigma_{\varphi \rho} & \sigma_{\varphi}^{2}
\end{array}\right]=\nabla J\left[\begin{array}{cc}
\sigma_{D}^{2} & 0 \\
0 & \sigma_{D}^{2}
\end{array}\right] \nabla J^{T}
$$

$$
\begin{aligned}
& \rho=x \cos (\varphi)+y \sin (\varphi) \\
& \sigma_{D}^{2}=Z D_{T}^{2}
\end{aligned}
$$

, SZ_Plane:
, Longitudinal resolution:
$\rho_{Z}=s \cos \left(\theta_{H T}\right)+z \sin \left(\theta_{H T}\right)$
$\sigma_{L}^{2}=Z D_{L}^{2}$
$S=\sqrt{\left(x_{h i t}-x_{p c a}\right)^{2}+\left(y_{h i t}-y_{p c a}\right)^{2}}$

$$
\left[\begin{array}{cc}
\sigma_{\rho_{z}}^{2} & \sigma_{\rho_{z_{\theta} \theta}} \\
\sigma_{\theta \rho_{z}} & \sigma_{\theta}^{2}
\end{array}\right]=\nabla J\left[\begin{array}{cc}
\sigma_{S}^{2} & 0 \\
0 & \sigma_{L}^{2}
\end{array}\right] \nabla J^{T}
$$

- Arc length for straight line:

Bivariate Normal Distribution

Bivariate Normal Distribution (BND):

$$
G(\varphi, \rho)=\frac{1}{2 \pi \sigma_{\rho} \sigma_{\varphi} \sqrt{1-r^{2}}} \exp \left[\frac{-c}{2\left(1-r^{2}\right)}\right]
$$

http://ballistipedia.com/index.php?title=Closed_Form_Precision
$c \equiv \frac{\left(\varphi-\mu_{\varphi}\right)^{2}}{\sigma_{\varphi}^{2}}+\frac{\left(\rho-\mu_{\rho}\right)^{2}}{\sigma_{\rho}^{2}}-\frac{2 r\left(\varphi-\mu_{\varphi}\right)\left(\rho-\mu_{\rho}\right)}{\sigma_{\varphi} \sigma_{\rho}}$
. Correlation :

$$
r \equiv \frac{\sigma_{\rho \varphi}}{\sigma_{\rho} \sigma_{\varphi}}
$$

Ellipse: minor and major axises

Ellipse equation of $1 / \mathrm{e}$ of Peak of BND:
, Finding ellipse equation from BND:

$$
\begin{equation*}
1=\frac{\left(\varphi-\mu_{\varphi}\right)^{2}}{q \sigma_{\varphi}^{2}}+\frac{\left(\rho-\mu_{\rho}\right)^{2}}{q \sigma_{\rho}^{2}}-\frac{2 r\left(\varphi-\mu_{\varphi}\right)\left(\rho-\mu_{\rho}\right)}{q \sigma_{\varphi} \sigma_{\rho}} \tag{1}
\end{equation*}
$$

- Rotated ellipse:

$$
\begin{equation*}
1=\left(\frac{\cos ^{2}(\alpha)}{a^{2}}+\frac{\sin ^{2}(\alpha)}{b^{2}}\right) x^{2}-2 \cos (\alpha) \sin (\alpha)\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) x y+\left(\frac{\sin ^{2}(\alpha)}{a^{2}}+\frac{\cos ^{2}(\alpha)}{b^{2}}\right) y^{2} \tag{2}
\end{equation*}
$$

- From (1) and (2):

$$
\begin{aligned}
& a^{2}=\frac{q \sigma_{\varphi}^{2} \sigma_{\rho}^{2} \cos (2 \alpha)}{\sigma_{\rho}^{2} \cos ^{2}(\alpha)-\sigma_{\varphi}^{2} \sin ^{2}(\alpha)} \\
& b^{2}=\frac{-q \sigma_{\varphi}^{2} \sigma_{\rho}^{2} \cos (2 \alpha)}{\sigma_{\rho}^{2} \sin ^{2}(\alpha)-\sigma_{\varphi}^{2} \cos ^{2}(\alpha)}
\end{aligned}
$$

Example: XY_Plane

Inliers and 1/e of peak of BND:

- Collecting all hits inside the ellipse => Inliers
> Size of fitting is changeable => Number of inliers is changeable too

Simulation

, Simulation of two tracks:
, Simulation for Large Prototype TPC (LP-TPC) at DESY
, Shooting two electrons 6 GeV , parallel to the X direction

- Same Z offset
> 590 mm from readout plane: Transverse resolution $\approx 0.70 \mathrm{~mm}$ in X and Y direction
- Vary ΔY from 1 mm to 8 mm
> 1000 events for each ΔY : 2000 tracks for each ΔY
> $B=1 T$
> Random Noise (Maximum 500)

Example of simulation with $\Delta Y=4 \mathrm{~mm}$

Simulation

Track Efficiency

, True Track: is associated to the MC particle with the more than some percentages (60\%, 70\%) of MC particle hits .
. For track reconstruction the minor and major ellipse's axises length multiplied by 2

Simulation

, Simulation of two tracks:
, Simulation for Large Prototype TPC (LP-TPC) at DESY
, Shooting two electrons 6 GeV , parallel to the X direction
, Same Y offset
, 590 mm from readout plane: Longitudinal resolution $\approx 1.95 \mathrm{~mm}$ in z direction
, Vary ΔZ from 1 mm to 10 mm
> 1000 events for each $\Delta Z: 2000$ tracks for each ΔZ
> $B=1 T$
> Random Noise (Maximum 500)

Example of simulation with $\Delta Z=10$ In mmm

Track Efficiency

. For track reconstruction the minor and major ellipse's axises length multiplied by 3

Summery and Outlook:

. Calculating width of a track in Hough space

- Collecting inliers directly in Hough space by Bivariate normal distribution fit in Hough space
- Using Karimaki fit for XY-plane and straight line for SZ-plane calculating 5 parameters and covariance matrix.
- Preliminary analysis for one Octoboard shows this method is promising
, Tracks with 6 mm distance in Z direction and 3 mm in Y direction can be separated
> Optimization is ongoing
, Tunning parameters to find any possibility of having better result
- Merging tracklets in order to have full track is ongoing
, Simulation for many Octoboards with two tracks

Backup

Analysis: based on simulation

Definition: Efficiency and Purity

> True Track: is associated to the MC particle with the most hits on the track and more than some percentages ($60 \%, 70 \%$) of MC particle hits .
> Track Efficiency: Number of true track to all number of MC particle

- Track Purity: Number of true track to sum over number of true track, ghost and clone tracks
> Right Hits: Number of hits on the track from the associated MC particle
> Hit Efficiency: Number of right Hits to number of associated MC particle hits
> Hit Purity: Number of right hits to all hits of the true track
, Test beam area at DESY(1-6 GeV e- beams)

- Infrastructure includes a large bore 1T magnet on a movable stage
, Large Prototype (LP) built and installed to test scaling up of technologies and to compare different readout technologies on equal footing
, LP field cage parameters:
, Length: 61 cm, Diameter: 72 cm
, Up to $25 \mathrm{kV}=>\mathrm{E}_{\text {drift }}$ up to $350 \mathrm{~V} / \mathrm{cm}$
, Wall material budget: $1.3 \% \mathrm{X}_{0}$
, Endplate is able to host 7 readout modules (dimensions $\sim 22 \times 17 \mathrm{~cm}^{2}$)

Infrastructure for test beam, TPC and Endplate from DESY group
. Test beam with 160 InGrid chips:

- Central module with 96 chips (coverage 50 \%)
- 2 outer modules with 32 chips each
, Some Challenges:
- InGrid production
- Synchronized readout
- Bonding on boards
> LV distribution (up to $85 \mathrm{~A} @ 2.2 \mathrm{~V}$)
- Cooling
- The test beam was successful. During the test beam $\sim 10^{6}$ frames at a rate of around 5 Hz were collected.
, Test beam program:
, Voltage scans (gas gain)
> Z-scan
- Momentum scan
- Different angles
- With and without magnetic field ($\mathrm{B}=1 \mathrm{~T}$)
, Two different electrical drift fields

ILCTPC - Bonn: Preliminary results for Test beam

Further information about test beam results:

- Michael Lupberger, "Preliminary results from the 160 InGrid test beam",University of Bonn, LCTPC-WP Meeting 10.09.2015,
, Jochen Kaminski,"Large Area Coverage of a TPC Endcap with GridPix Detectors", University of Bonn,For the LCTPC collaboration , MPGD 2015, Trieste 12-15.10.2015,

- LC-TPC parameter

Parameter	
	$r_{\text {in }} \quad r_{\text {out }} \quad$ z
Geometrical parameters	$329 \mathrm{~mm} \quad 1808 \mathrm{~mm} \quad \pm 2350 \mathrm{~mm}$
Solid angle coverage	up to $\cos \theta \simeq 0.98(10$ pad rows $)$
TPC material budget	$\simeq 0.05 \mathrm{X}_{0}$ including outer fieldcage in r
	$<0.25 \mathrm{X}_{0}$ for readout endcaps in z
Number of pads/timebuckets	$\simeq 1-2 \times 10^{6} / 1000$ per endcap
Pad pitch/ no.padrows	$\simeq 1 \times 6 \mathrm{~mm}^{2}$ for 220 padrows
$\sigma_{\text {point }}$ in $r \phi$	$\simeq 60 \mu \mathrm{~m}$ for zero drift, $<100 \mu \mathrm{~m}$ overall
$\sigma_{\text {point }}$ in $r z$	$\simeq 0.4-1.4 \mathrm{~mm}($ for zero - full drift $)$
2-hit resolution in $r \phi$	$\simeq 2 \mathrm{~mm}$
2-hit resolution in $r z$	$\simeq 6 \mathrm{~mm}$
dE/dx resolution	$\simeq 5 \%$
Momentum resolution at $\mathrm{B}=3.5 \mathrm{~T}$	$\delta\left(1 / p_{t}\right) \simeq 10^{-4} / \mathrm{GeV} / \mathrm{c}(\mathrm{TPC}$ only)

