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Introduction

• Current tracking algorithms have been used very 
successfully in HEP/LHC experiments 
• Good efficiency and modeling with acceptable throughput/

latency 
• However, they don’t scale so well to HL-LHC conditions 

• Thousands of charged particles, O(105) 3D spacepoints, 
while algorithms scale worse than quadratic 

• Thus, it’s worthwhile to try and think “outside the box”; i.e., 
consider Deep Learning algorithms 
• Relatively unexplored area of research 
• Might see major improvements… who knows?
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The HEP.TrkX project

• A 1-year pilot project to develop ML algorithms for HEP tracking 
• Funded by DOE ASCR and COMP HEP, part of HEP CCE 
• Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL 

• Some goals 
• Explore the broad space of ideas on simplified tracking problems 
• Develop a toolkit of promising ideas 

• ideas that work (physics constraints) 
• ideas that scale (computing constraints) 

• The work is in an exploratory phase 
• Testing ideas in a breadth-first fashion 
• Very much a work-in-progress
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Current algorithmic approach (ATLAS, CMS)

• Divide the problem into sequential 
steps 

1. Cluster hits into 3D spacepoints 
2. Build triplet “seeds” 
3. Build tracks with combinatorial 

Kalman Filter 
4. Resolve ambiguities and fit tracks
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How to incorporate machine learning techniques?

• What part(s) of the problem to replace? 
• Seeding, single-track building, fitting? 
• Seeded multi-track finding? 
• All-in-one hits to list of tracks? 

• How to represent the data? 
• Clustered hits in continuous space or raw pixel data? 

• or binned clusters..? 
• List of hits, or list of 4-momenta? 

• uncertainties, too? 
• How to deal with the many challenges? 

• sparsity and irregularity in the data 
• defining differentiable cost functions (wrestling ambiguities) 
• requirements for fine-level control and interpretability of the model 
• and of course: space and time complexity constraints!
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Deep neural network architectures

• Fully-connected (feed-forward) networks 
• Vanilla MLPs with fixed input, output size 

• Good for classification, regression 

• Common building block in complex models 

• Recurrent networks 
• Model dependencies in sequence data 

• Variable-length data 

• Convolutional networks 
• Hierarchical pattern finders (local to global) 

• Exploit translational invariance in data
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LSTM networks

• LSTM (Long Short Term Memory) networks are recurrent neural networks that 
model long term dependencies in sequence data by carrying a memory 

• Can be used for state estimation and modeling of track dynamics 
• Kinda like a Kalman Filter 
• But it might actually be smarter! 

• Maybe it can model combinatorics for a track in one pass 
• Maybe it can process multiple tracks at once
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Convolutional networks as track finders

• Convolutional filters can be thought of as track pattern matchers 
• Early layers look for track stubs 
• Later layers connect stubs together to build tracks 
• Learned representations are in reality optimized for the data => may be abstract 

and more compact than brute force pattern bank 
• The learned features can be used in a variety of ways 

• Extract out track parameters 
• Project back to detector image and classify hits
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Datasets

• Currently working with absurdly simple                                          
toy datasets 
• Straight line tracks in 2D or 3D on simple                                      

detector planes 
• Perfect binary hits; no holes or charge-sharing 
• Random background tracks and/or uniform noise 

• We have also started playing with ACTS data 
• KF-like models being explored now 
• The models I show today need to be extended to work on       

“realistic geometry” 
• Even then we expect to ignore endcaps for now ;)
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Track finding with LSTMs

• Try to build a single, seeded track from a set of 
hits with backgrounds
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reconstruct 
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Track finding with LSTMs

• Try to build a single, seeded track from a set of 
hits with backgrounds 

• Detector plane pixel arrays fed into the model 
one at a time
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Track finding with LSTMs

• Try to build a single, seeded track from a set of 
hits with backgrounds 

• Detector plane pixel arrays fed into the model 
one at a time 

• The model spits out an array of “scores” for 
that detector plane 
• Pixel predictions (or hit “classification”) 

• The LSTM memory is used to carry the 
dynamic state estimate, updated at each 
iteration 

• The model may consider multiple candidate 
paths, but hopefully converges on correct one
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Ramp 
challenge

- Rebin phi to 200 
bins in each layer 

- Use first layer hits 
as seeds 

- Loop over seeds, 
use LSTM to 
score hits 

- For each hit, take 
best track 
assignment as 
label



Track finding with LSTMs

• Try to build a single, seeded track from a set of 
hits with backgrounds 

• Detector plane pixel arrays fed into the model 
one at a time 

• The model spits out an array of “scores” for 
that detector plane 
• Pixel predictions (or hit “classification”) 

• The LSTM memory is used to carry the 
dynamic state estimate, updated at each 
iteration 

• The model may consider multiple candidate 
paths, but hopefully converges on correct one 

• Can be made more effective in several ways 
• Attach regression layer to get track params 
• Iterate multiple times to smooth prediction 
• Multiple tracks at once
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Extending to variable-size detector layers

• LHC detector data doesn’t come in fixed size layers 
• We have cylindrical layers increasing in size 

• We can extend the model by first mapping each 
layer onto a fixed size latent (embedding) space 

• Output transformations correspondingly map a 
fixed-size prediction onto the target detector layer 

• Generate data for this by selecting subset of the 
square detector data:
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How about convolutional networks?

• Convolutions can also 
extrapolate and find tracks 

• Need to ensure information 
propagates across entire 
detector 
• Extrapolation reach can 

be limited by network 
architecture 

• Convolutional autoencoder 
seems to be a good fit
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Trained with 10 conv layers, no down-sampling 

9-layer convolutional autoencoder

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694


3D toy detector data

• Starting to get a little more “realistic” 
• 10 detector planes, 32x32 pixels each 
• Number of background tracks sampled from Poisson 
• With/without random noise hits 

• Adapting my existing models to this data is mostly straightforward 
• Flatten each plane for the LSTM models 
• Use 3D convolution
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Trying more models

• Deeper LSTM model 
• Adds fully-connected layers before/after                                                      

the LSTM 
• Bi-directional LSTM 

• Adds a second LSTM running over                                              
sequence in reverse 

• Concatenate the two outputs 
• Next-layer LSTM 

• Predict where the hit will be on the next detector plane, rather than 
the current detector plane 

• Basically just an extrapolator, but might be interesting to compare 
• 3D convolutional model 

• 10 layers, no downsampling 
• 3D conv autoencoder model 

• Uses max-pooling to downsample 
• Decodes with single fully connected layer
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LSTM prediction

• Sometimes gives predictions that are not smooth 
• Occasionally fooled by adjacent hits, though it tends to correct itself
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Bidirectional LSTM prediction

• Very precise predictions 
• can see into the future, which presumably helps 

• still has few rare artifacts
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Next-layer LSTM prediction

• Next-layer model gives predictions that are less precise but smoother and more accurate 
• Mostly unaffected by nearby stray hits 

• With this detector occupancy, they are the best at classifying hits 
• but this may change with higher occupancy
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ConvNN prediction

• Simple conv net is clean and precise in this case
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Architecture comparisons

• Models’ performance tanks with 
increasing track multiplicity 

• ConvNN scales the best 

• Interesting tradeoffs between the 
architectures
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End-to-end track finding

• Can we simply convert raw detector signals into 
physics quantities? 
• Process the detector “image” with convolutional 

layers into a latent representation 
• Use an LSTM to spit out the parameters of the 

tracks, one by one! 
• Close analogy to the image captioning problem
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Pixels to track parameters in 2D toy data

• Sampling number of tracks from Poisson, with a maximum imposed 
• Model spits out slope and intercept for each track 
• With poisson(3), max=6, give mean validation loss = 1.6 

• Work ongoing to implement this with an attention mechanism and 
also fold in hit assignment
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Estimating uncertainties on parameters

• In addition to the track parameters, we would need the covariance 
• How do we extend the model to spit out reasonable uncertainties? 

• Add additional output to model for the covariance matrix: 

• Replace mean-squared-error loss function with a log gaussian likelihood:
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Estimating uncertainties on parameters

• We can visualize the uncertainties on the predictions 

• However, it does get unstable with large numbers of tracks
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Improvements in 
development



Visualizing convolutional networks

• First layer filters don’t really look like track stubs, as intuition might suggest 
• The model instead learns something abstract, probably more compact 

• We can iteratively optimize input images for specific filters, letting us visualize 
what kinds of features the network is looking for:
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From the 2D conv 
autoencoder hit classifier

From the 2D track 
parameter estimator model



Conclusion

• The HEP.TrkX project was formed to investigate ideas for applying machine 
learning algorithms to the problem of HEP tracking 
• We’re still in an exploratory phase, testing things out, having fun 

• A number of ideas have been demonstrated already on very simple toy data 
• LSTM and convolutional networks for track finding 
• End-to-end track finding with Conv + LSTM 
• Other things I haven’t covered today 

• Our game plan for the next few months: 
• Increase complexity and realism of the problem (e.g., ACTS data) 
• Converge on a small number of ideas to explore in depth 
• Compare to reasonable baselines (e.g. Kalman filter) in performance and 

complexity 
• Pay attention for our future results!
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Backup
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Other ideas - data transforms

• Hough Transform breaks down in LHC-like data due to process noise 
and high occupancy 

• But what if a deep network could learn a mapping to group together 
hits that belong to the same track? 
• You don’t need to impose a specific representation 
• The model could take event context into account

35



Other ideas - graph convolutions

• Graph convolutions operate on graph-structured data, taking into account 
distance metrics 
• https://tkipf.github.io/graph-convolutional-networks/ 

• Connections between ~plausible hits on detector layers can form the graph 
• Handles sparsity naturally 
• Scales naturally with occupancy 

• I haven’t dedicated much thought to this yet, but it may be versatile enough to 
do the kinds of things I’ve already demonstrated
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LHC tracking
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ATLAS tracking in dense environments
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Stolen from Ben Nachman’s TPM presentation: 
https://indico.physics.lbl.gov/indico/event/433/
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LSTMs for track finding (2D toy data)
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Model architectures - LSTM
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 9, 1024)       0
____________________________________________________________________________________________________
lstm_1 (LSTM)                    (None, 9, 1024)       8392704     input_1[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 9, 1024)       1049600     lstm_1[0][0]
====================================================================================================
Total params: 9442304
____________________________________________________________________________________________________



Model architectures - Deep LSTM
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 10, 1024)      0
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 10, 1024)      1049600     input_1[0][0]
____________________________________________________________________________________________________
lstm_1 (LSTM)                    (None, 10, 1024)      8392704     timedistributed_1[0][0]
____________________________________________________________________________________________________
timedistributed_2 (TimeDistribute(None, 10, 1024)      1049600     lstm_1[0][0]
____________________________________________________________________________________________________
timedistributed_3 (TimeDistribute(None, 10, 1024)      1049600     timedistributed_2[0][0]
====================================================================================================
Total params: 11541504
____________________________________________________________________________________________________



Model architectures - Bidirectional LSTM

42

____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 10, 1024)      0
____________________________________________________________________________________________________
bidirectional_1 (Bidirectional)  (None, 10, 2048)      16785408    input_1[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 10, 1024)      2098176     bidirectional_1[0][0]
____________________________________________________________________________________________________
timedistributed_2 (TimeDistribute(None, 10, 1024)      1049600     timedistributed_1[0][0]
====================================================================================================
Total params: 19933184
____________________________________________________________________________________________________



Model architectures - Next-layer LSTM
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 9, 1024)       0
____________________________________________________________________________________________________
lstm_1 (LSTM)                    (None, 9, 1024)       8392704     input_1[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 9, 1024)       1049600     lstm_1[0][0]
====================================================================================================
Total params: 9442304
____________________________________________________________________________________________________



Model architectures - ConvNN
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 10, 32, 32)    0
____________________________________________________________________________________________________
reshape_1 (Reshape)              (None, 1, 10, 32, 32) 0           input_1[0][0]
____________________________________________________________________________________________________
convolution3d_1 (Convolution3D)  (None, 8, 10, 32, 32) 224         reshape_1[0][0]
____________________________________________________________________________________________________
convolution3d_2 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_1[0][0]
____________________________________________________________________________________________________
convolution3d_3 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_2[0][0]
____________________________________________________________________________________________________
convolution3d_4 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_3[0][0]
____________________________________________________________________________________________________
convolution3d_5 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_4[0][0]
____________________________________________________________________________________________________
convolution3d_6 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_5[0][0]
____________________________________________________________________________________________________
convolution3d_7 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_6[0][0]
____________________________________________________________________________________________________
convolution3d_8 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_7[0][0]
____________________________________________________________________________________________________
convolution3d_9 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_8[0][0]
____________________________________________________________________________________________________
convolution3d_10 (Convolution3D) (None, 8, 10, 32, 32) 1736        convolution3d_9[0][0]
____________________________________________________________________________________________________
convolution3d_11 (Convolution3D) (None, 1, 10, 32, 32) 217         convolution3d_10[0][0]
____________________________________________________________________________________________________
reshape_2 (Reshape)              (None, 10, 1024)      0           convolution3d_11[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 10, 1024)      0           reshape_2[0][0]
====================================================================================================
Total params: 16065
____________________________________________________________________________________________________



Model architectures - Conv autoencoder
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 10, 32, 32)    0
____________________________________________________________________________________________________
reshape_1 (Reshape)              (None, 1, 10, 32, 32) 0           input_1[0][0]
____________________________________________________________________________________________________
convolution3d_1 (Convolution3D)  (None, 8, 10, 32, 32) 224         reshape_1[0][0]
____________________________________________________________________________________________________
convolution3d_2 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_1[0][0]
____________________________________________________________________________________________________
maxpooling3d_1 (MaxPooling3D)    (None, 8, 10, 16, 16) 0           convolution3d_2[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout)              (None, 8, 10, 16, 16) 0           maxpooling3d_1[0][0]
____________________________________________________________________________________________________
convolution3d_3 (Convolution3D)  (None, 16, 10, 16, 16)3472        dropout_1[0][0]
____________________________________________________________________________________________________
convolution3d_4 (Convolution3D)  (None, 16, 10, 16, 16)6928        convolution3d_3[0][0]
____________________________________________________________________________________________________
maxpooling3d_2 (MaxPooling3D)    (None, 16, 10, 8, 8)  0           convolution3d_4[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout)              (None, 16, 10, 8, 8)  0           maxpooling3d_2[0][0]
____________________________________________________________________________________________________
convolution3d_5 (Convolution3D)  (None, 32, 10, 8, 8)  13856       dropout_2[0][0]
____________________________________________________________________________________________________
maxpooling3d_3 (MaxPooling3D)    (None, 32, 10, 4, 4)  0           convolution3d_5[0][0]
____________________________________________________________________________________________________
dropout_3 (Dropout)              (None, 32, 10, 4, 4)  0           maxpooling3d_3[0][0]
____________________________________________________________________________________________________
convolution3d_6 (Convolution3D)  (None, 64, 10, 4, 4)  55360       dropout_3[0][0]
____________________________________________________________________________________________________
maxpooling3d_4 (MaxPooling3D)    (None, 64, 10, 2, 2)  0           convolution3d_6[0][0]
____________________________________________________________________________________________________
dropout_4 (Dropout)              (None, 64, 10, 2, 2)  0           maxpooling3d_4[0][0]
____________________________________________________________________________________________________
convolution3d_7 (Convolution3D)  (None, 96, 10, 2, 2)  73824       dropout_4[0][0]
____________________________________________________________________________________________________
maxpooling3d_5 (MaxPooling3D)    (None, 96, 10, 1, 1)  0           convolution3d_7[0][0]
____________________________________________________________________________________________________
dropout_5 (Dropout)              (None, 96, 10, 1, 1)  0           maxpooling3d_5[0][0]
____________________________________________________________________________________________________
convolution3d_8 (Convolution3D)  (None, 128, 10, 1, 1) 36992       dropout_5[0][0]
____________________________________________________________________________________________________
permute_1 (Permute)              (None, 10, 128, 1, 1) 0           convolution3d_8[0][0]
____________________________________________________________________________________________________
reshape_2 (Reshape)              (None, 10, 128)       0           permute_1[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 10, 1024)      132096      reshape_2[0][0]
====================================================================================================
Total params: 324488
____________________________________________________________________________________________________


