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With future colliders attaining never-before-reached luminosities and data rates, new methods of computation and 
new architectures on which to perform those computations are being explored.  
We’ve seen popular tracking algorithms like Kalman filters ported to GPU’s and FPGA’s. But what about 
neuromorphic computing?  
IBM Research gave us access to their first neuromorphic chip but how easy is it to program? What are its limitations? 
And is it something we could feasibly add to our toolkit in the future? 

Introduction

In this talk I will explore these questions through an implementation of a Kalman filter in TrueNorth.

. . .
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http://www.asimovinstitute.org/neural-network-zoo/

Topology Sum of weighted inputs Activation (transfer) function 

⌃w00x0

x1 w01

y0

Arguably weight training is also a key 
characteristic of ANN’s but is closely tied 

to topology and activation function.

yj =
X

i

wijxi

• ANN’s and neuromorphic 
networks have much in common: 

They can be arranged in a variety 
of topologies 
They have computational nodes 
called neurons that operate on 
the weighted sum of their inputs. 
They apply some function to that 
sum to produce an output.
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Instead of activation functions, neuromorphic 
neurons check the neuron potential against a 
threshold.  
Also, inherent time dependence between 
iterations of the network: the potential is stored 
until it goes over threshold and then a reset rule 
is applied. 

• The key differences are: 
Neuromorphic neurons do not have 
activation functions. 
The weighted sum is thresholded1. 
Data is communicated by spikes. 
Some neuromorphic neurons attempt 
to mimic biological neurons closely 
and apply shaping to their spikes or 
use analogue electronics. 

The key difference

Vj(t) = Vj(t� 1) +
256X

i=0

ni(t)⇥ wi,j ⇥ sGi
j

1 In the simplest models
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  CPU

Memory
I/O

Traditional von Neumann architecture Distributed, parallel architecture 

bottleneck

Binary n-bit words Temporally separated spikes

Instruction set Connectivity and weight model file
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2008: NeuFlow 
@ NYU (J. LeCunn)

2011: Spikey @ Heidelberg

2013-18: Neuromorph and 
Brainstorm @ Stanford
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2016: Spinnaker 0.5M 
core machine  

@ HBP/Manchester

TrueNorth is not the only neuromorphic hardware  

1.Spinnaker: scalable, low-power units 
2.Brainstorm: NEF and populations of neurons 
3.Spikey/BrainScaleS: analogue spikes, neuroplasticity, 10k speedup. 
NeuFlow: Conv. neural network on-chip. Not really neuromorphic.. but an 

example of NN hardware!

More neuron-inspired computing at NICE 2016 [link] 
NICE 2017 is this week @ IBM Almaden, slides will appear in a few weeks
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2011 - a single core demonstrator 

2014/15 - TrueNorth chip opened up to select institutes 

• Project is from DARPA SyNAPSE: metric of a one 
million neuron brain-inspired processor. 

• Not biologically motivated! Low power, scalability, 
and connectivity were the motivating factors. 

• (Unofficial) summary of project here.
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TrueNorth architecture

Low power regime, therefore: 10’s-100's of mW 
1kHz synchronization point (read: clock) 
Fully digital, simulator has 1-to-1 correspondence with chip

Memory

Controller

Scheduler
Router

Neuron

NS1e board

256 neurons 
and axons 
per core
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Axons = input + label 
Neuron = computation + output 

Synapses = connecting axons and neurons 
Crossbar = synapse frame

Weights and threshold 
applied in neuron. A signed 
8-bit weight can be saved 
per axon label.

Axons are the xbar 
input. Also provide 
a label ∈ {1,2,3,4} 

Connections are 
between 1 neuron 
and 1 axon. Fan 
out/in requires 
multiple neurons/
axons.  

Synapses ∈ {0,1} 
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Off-chip On-chip

= state measurement 
= state prediction 
= transition matrix 
= Kalman gain 
= process noise 
= measurement noise

~xt+1 = F~xt + ~wt , ~yt = ~xt + ~vt

x̂t+1|t = (F� L)x̂t|t�1 + L~yt

= Ax̂t|t�1 +B~yt

A

~yt
B~yt

Ax̂t|t�1

x̂t+1|t

Transduction 
to spikes

y
x

F
L
w
v

A state estimate and a noisy measurement

Steady state Kalman filter update 

• Kalman filters have been implemented on 
ANNs before. So there were a variety of 
approaches: 

Could try to mimic a pre-existing ANN 
impl. but complicated to get similar 
performance ( see TN’s efforts with Caffe/
Tea).  
Investigated ‘Neural engineering’ 
approach - relies on non-digital neurons.  
Settled on a simple update step with 
multiplication and addition. Constrained to 
steady-state KF through lack of updatable 
weight registers and back-prop. 
constraints.
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Addition on TrueNorth

Addition is inherent to the neuron’s processing of inputs. So to add two inputs together, connect them 
to the same neuron and set the neuron’s input weight and threshold to 1.
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Matrix element weights encoded as neuron weight

threshold

For example to represent a trained weight of 0.512: s = 64

↵ = 125

=
s

↵

s1

other weighted input

⌃

threshold = alpha
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xin0 s0
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Neuron potential

reset

Multiplication/division is also inherent to the neuron’s processing of inputs. The weight then must be expressed as 
a rational number.
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The recurrent step here has a 
delay to time in the additions 
correctly (not shown)

Two channels, to deal with 
positive and negative values 
as no logic to deal with 
signed numbers in spikes.  
 
Not shown in this cartoon: 
logic to combine positive and 
negative channels after firing. 

Axon type 0

Axon type 0

Axon type 1
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NSCS KF vs numerical KF for sin(x) - 1k tick encoding window, 1ms tick
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NSCS KF vs numerical KF for 1D projectile - 10k tick encoding window, 1ms tick
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Does it work?
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window=4 

x = 1.0

Rate encoding Spatial & rate encoding

100 == 010 == 001

100 != 010 != 001In binary:

In unary:
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blocksize=1

Although in all of these cases there are 20 spikes (or lack of spikes) per word, there is a clear tradeoff between 
latency and axons used. 

Rate encoding

• TrueNorth communicates data through spikes.  
We have chosen to encode spikes in unary as it 
lends more flexibility to crossbar formulation.  
Encoding of values can be done in space (across 
axons) as well as in time (across multiple ticks).
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To represent a weight of 0.9182991: 

8-bit neuron weight:

18-bit neuron threshold:

Using 1 axon, trained 
weight to 3 s.f.

Using 2 axons, trained 
weight to 4 s.f.

2*(8)-bit neuron weight:

18-bit neuron threshold:

q

Duplicating inputs over multiple axons can extend the range of the neuron weight from {± 255} 
to {±q*255} and improve the accuracy of the output. The threshold range can also be 
extended but this is needed less often.

axonType 1: s = 255
axonType 0: s = 215

axonType 0: s = 141

q

Using 7 axons, trained 
weight to 7 s.f.

7*(8)-bit neuron weight:

18-bit neuron threshold:

axonType 0: 
s = 137

s = 45 s = 251 s = 1922

↵ = 49 ↵ = 306 ↵ = 2093

s

↵
= 0.91837

s

↵
= 0.91830

s

↵
= 0.91829909
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1D Projectile tracking: 100 tick encoding, 1e-3 process noise, 1e-3 meas. noise, 1e-3 sampling rate
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1D Projectile tracking: 10k tick encoding, 1e-3 process noise, 1e-3 meas. noise, 1e-3 sampling rate
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Number of spikes used to represent word

Effect of word size on MSE between TN KF and ideal KF for 1D projectile

8-bit weight
15-bit weight
18-bit weight

Data representation does have an effect on accuracy: 
There is a limit to the accuracy that can be achieved using 
more spikes per word for a given neuron weight register size.  
Using more spikes per data word will increase the amount of 
real estate consumed by the model or the latency of each 
estimate depending on which encoding scheme is used. 

Data representation in spikes 
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2
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Parallelism can reduce speedup latency 

Because of the finite size of a core if more neurons are used 
for parallel computation, less are available to extend the 
range of the weight and threshold registers.

But what about computation time? Can we increase the rate of the global ‘tick’?
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Speedup from parallel computation [arb]

Effect of increasing blocksize on system latency and neuron weight range in one core
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DOI: 10.1109/TCAD.2015.2474396

Memory

Controller

Scheduler
Router

Neuron

TrueNorth has a mix of synchronous and asynchronous (event driven) 
logic. To enforce global order an externally generated ‘tick’ is used. This is 
not a traditional clock but its edge is used to trigger the controller to begin 
processing spikes in the core. Communication between cores happens 
asynchronously by a 4-phase handshake.  

Each spike carries a 4-bit ‘destination tick’ (i.e. you can add a 
delay to the timing, assuming the spike packet arrives when it is 
supposed to.)  
Scheduler then stores the spikes in the correct part of the memory 
before their allotted tick. 

Scheduler error: spike delivery is ensured to be longer than max latency between source and 
destination. So if chip has a large model implemented and tick is sped up - spike generator 
may refuse to create file. 
Token ctrl error: If the spikes can’t be processed in time, because of the volume of spikes in a 
single core. 
 A TrueNorth chip can only take so many spikes per port, and then there is a firmware and 
software pipeline that must match this throughput. We see on the order of 15 million spikes 
per second total throughput, which is 480 Mbps data rate between FPGA and TN.  

We never managed to cause either of the first 2 failure modes with our simple serial kaman 
filter. However we did cause the last error to be thrown when we tried to increase the tick rate 
from 1kHz to 10kHz. A 5kHz tick was possible.

Remainders in the neuron potential
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To achieve the lower power constraints of the DARPA project the TrueNorth team has had to compromise with programming 
flexibility and neuron complexity in this chip. 
Not only is it not fast enough for our computing needs it cannot be sped up. 
Although parallelism can be used to reduce latency there is an upper limit of 21x.  
The chip communicates with spikes: which must be encoded. The chip cannot be operated without an FPGA or equivalent to 
encode/decode and transmit spikes. An external ‘tick’ must also be supplied. 
This is not an ANN but a neuromorphic neural network, and only an approximate one and because of that cannot implement 
either real-time weight updates or back-prop.

CPU GPU FPGA Neuromorphic

We have adapted CPU’s, GPU’s and FPGA’s for our needs. Could neuromorphic chips feature in our 
toolkit in 10 years time? Perhaps but it seems more likely we would use an ASIC ANN. 

Questions?

. . .
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The McCulloch-Pitts neuron is a simplified version of the perceptron, 
without a bias and with no Hebbian learning rules. It has a binary 
output based on a thresholded step function.

Cm
dV (t)

dt
= �

X

i

Ii(t, V )

Hodgkins-Huxley model is a biologically plausible neuron model that 
accounts for leakage across the membrane from different ions and 
different rates of ions. The Ii term is a parameterized model of the 
conductance across the membrane, with at least 20 parameters.

Cm
dVm(t)

dt
= I(t)� Vm(t)

Rm

One of the simplifications to this model to make it tractable is the LIF 
neuron. Leaky integrate-and-fire is a reduced complexity subset of 
HH. Grouping any current independent of input as a constant leak.  

y = step

 
Vj(t� 1) +

N=256X

i=1

ni(t)s
Gi
j wi,j + �j

!

TrueNorth neuron

McCulloch-Pitts neuron Hodgkins-Huxley neuron

Leaky Integrate-and-fire neuron

DOI: 10.1109/IJCNN.2013.6707077

Calling TN neurons LIF seems to be a misnomer. They 
are far closer McCulloch-Pitts neurons and have none 
of the time-dependent capabilities of LIF neurons 
(aside from the persistent neuron potential).
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Spike trains cannot encode negative values. There is no easy way of dealing with signed logic that could be 
implemented in neuromorphic neurons. 
Instead, positive and negative values are dealt with in parallel trains. 
These are combined in addition corelets, like the bar shown above for a serial addition of positive and negative 
numbers.  
The recurrent network above correctly changes the neuron potential in the opposite signed neuron if the positive 
or negative one were to spike.  

Preserving the remainder affects performance

VNeuron #0 VNeuron #1 Spikes in Spikes out 

0 + 1 - 1 = 0 0 - 1 + 1 = 0 1,1 0,0

0 - 1 = -1 0 + 1 - 1 = 0 0,1 0,0

-1 + 1 + 1 - 1 = 0 0 - 1 = -1 1,0 0,1

0 + 1 - 1 = 0 - 1 + 1 - 1 = -1 1,0 1,0

0 -1 + 1 = 0 0,0 1,0

Total spikes +3, -2 2-1 = 1
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Backup: Preserving neuron memory between ticks

s

s

∓α

-α
α 2α

In the serial case the reset scheme for multiplication is that when a 
neuron fires its potential is reduced by α. In the parallel 
implementation all neurons in the block are reset by (α*# neurons that 
spiked). The logic to implement this is shown in the xbar to the left.   

Other parallel implementations either reset all neurons to zero 
after a tick, or reset all neurons to zero after a data word: 
thus throwing away neuron remainders.  
Previous TN groups have shown this to work for classification 
nets - does it work for us?

Remainders in the neuron potential

VNeuron #0 VNeuron #1 Spikes in Spikes out 

0+12-7=5 0+12 = 12 1,1 0,0
5+12-7=10 12+12-7-14=3 1,1 0,1

10+12-7-7=8 3+12-14=1 1,1 1,1
8+12-7-7=6 1+12 = 13 1,1 1,1
6+12-7=11 13+12-7-14=4 1,1 1,0

11+12-7-7=9 4+12-14=2 1,1 1,1
9+12-7-7=7 2+12-14=0 1,1 1,1

7-7 = 0 7-7 = 0 0,0 1,1
Total spikes 14 12

sp
ike

s 
in

spikes out

As an example let: s = 6, α = 7 to represent the trained 
weight of 6/7.  
Then, for blocksize = 2 (as shown in the cartoon), if we 
send in 14 spikes we expect: 

14*(6/7) = 12 
spikes out. 
Note that because of the reset line the output takes an 
additional tick to be output. 
Red shows self-reset, blue shows reset due to recurrent 
connection from other neurons in block firing.
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100 tick encoding, ProcessNoise: 1e-3, MeasNoise: 1e-1, reset Vneuron after window
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100 tick encoding, ProcessNoise: 1e-3, MeasNoise: 1e-1, no special Vneuron reset
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Effect of resetting Vneuron after each iteration on MSE for sine wave tracking

Reset Vneuron after each iteration
Allow Vneuron to propagate into next word

Other TrueNorth projects do not preserve a remainder, including their 
RNN projects. Our reset crossbar, whilst adding complexity, improves  
the estimate.  

Again, there is a dependency on data representation in 
number of spikes. 
Resetting the potential after each word is not the right 
solution for this use case of the chip. 

Preserving the remainder affects performance
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Backup: Preserving neuron memory between ticks
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