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INntroduction

With future colliders attaining never-before-reached luminosities and data rates, new methods of computation and
new architectures on which to perform those computations are being explored.

We've seen popular tracking algorithms like Kalman filters ported to GPU’s and FPGA’s. But what about
neuromorphic computing?

- IBM Research gave us access to their first neuromorphic chip but how easy is it to program? What are its limitations”
-f:) And is it something we could feasibly add to our toolkit in the future?
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In this talk | will explore these questions through an implementation of a Kalman filter in TrueNorth.


mailto:rcarney@lbl.gov?subject=

o Mar 2017 | rearney@Ibl.gov Neuromorphic network vs ANN

Topology Sum of weighted inputs Activation (transfer) function
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BERKELEY LAB Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

http.//www.asimovinstitute.org/neural-network-zoo/

called neurons that operate on
the weighted sum of their inputs.

o They apply some function to that
sum to produce an output.

Arguably weight training is also a key
characteristic of ANN’s but is closely tied
to topology and activation function.

3
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Neuromorphic neurons In TrueNorth

= | Ne Kkey difference = —— T — Output
e . . S outp o @ spikes
- Instead of activation functions, neuromorphic (‘% SN S S S S S S S— T P
_g neurons check the neuron potential against a 30 T R SR RS RS m—— —
j threshold. 5 o5 Threshold
8 Also, inherent time dependence between , {1/,
- terations of the network: the potential is stored & Neuro_n
O until it goes over threshold and then aresetrule & potential
O s applied. &
5 5
O e The key differences are: =
= > Neuromorphic neurons do not have 2
- activation functions.
O o The weighted sum is thresholded’. =
= o Data is communicated by spikes. g tino [ o o ““ """" o o ‘V\ ;nﬁ’(‘;l
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Instruction set Connectivity and weight model file

: B | S
O ,
-4% bottleneck :
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O Traditional von Neumann architecture . Distributed, parallel architecture
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o : VWJJJ\/
—— "" Binary n-bit words X Temporally separated spikes
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2016: Spinnaker 0.5M
core machine
@ HBP/Manchester
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2013-18: Neuromorph and
Brainstorm @ Stanford

2011 Spikey @ Heidelberg

1.Spinnaker: scalable, low-power units

2.Brainstorm: NEF and populations of neurons

3.Spikey/BrainScaleS: analogue spikes, neuroplasticity, 10k speedup.

NeuFlow: Conv. neural network on-chip. Not really neuromorphic.. but an
example of NN hardware!

[ hree neuromorpnic hardware
Orojects

N 2008: NeuFlow
@ NYU (J. LeCunn)

®

More neuron-inspired computing at NICE 2016 [link]
NICE 2017 is this week @ IBM Almaden, slides will appear in a few weeks
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B | 2011 - a single core demonstrator
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Project is from DARPA SyNAPSE: metric of a one

million neuron brain-inspired processor.

f(rreeee ‘m
_ Not biologically motivated! Low power, scalability,
and connectivity were the motivating factors.

7 :  (Unofficial) summary of project here.
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Memory
256 neurons

TrueNorth Chip | ; ﬁ Controller per core

64 x 64 cores§

i Scheduler
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o Low power regime, therefore: 10°’s-100's of mW
o 1kHz synchronization point (read: clock)
o Fully digital, simulator has 1-to-1 correspondence with chip
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Connections are per axon label.
— A between 1 neuron Axons = input + label
reeeocoec| | and 1 axon. Fan .
r\‘ t/in requires Neuron = computation + output
ou q

Synapses = connecting axons and neurons

multiple neurons/
Crossbar = synapse frame

9 axons.


mailto:rcarney@lbl.gov?subject=

oth Mar 2017

Steady state kaman filter notation

S

frrereee ‘m

BERKELEY LAB

10

rcarney@Ibl.gov Steady-state KF as linear update

« Kalman filters have been implemented on
ANNSs before. So there were a variety of
B — approaches:
Yt R o Could try to mimic a pre-existing ANN

L1 ¢ impl. but complicated to get similar
performance ( see TN’s efforts with Caffe/
Tea).

o |nvestigated ‘Neural engineering’

xt\t— 1 approach - relies on non-digital neurons.

o Settled on a simple update step with
multiplication and addition. Constrained to
steady-state KF through lack of updatable
weight registers and back-prop.
constraints.

Off-chip

Transduction
to spikes

X = state prediction

F’'= transition matrix Tiy1 = ¥ +we , yp = T4 + Uy

L = Kalman gain
W = Process noise

UV = measurement noise A o A —
xt+1\t — (F - L)$t|t—1 + Lyt

A1 + By

Steady state Kalman filter update
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- Addition on TrueNorth
O
= apoTo + 11 By)o
= Ax + By = -+ ( By)
— 100 T A11L1 ( y)1
-
O
nN
5 (By)o ®
4@ (BY)1 . | otner \Ne'\gme? '\“p\’“threis:ild =1
é.)_ aOOXO . :.: Xim"@\‘ >'>XOU’[
— doiX1 @ | Cy
= Xing reset
8 a10x0 . ¢ Neuron potential
O D ®
S
Z A A
- X0 _out X1 out

/_\‘ /\

f(reeere ‘ﬂ

S e Addition is inherent to the neuron’s processing of inputs. So to add two inputs together, connect them

to the same neuron and set the neuron’s input weight and threshold to 1.
17
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Matrix multiplication

Ny — adoo 4ol L dooLo T Ap1L1
adip di1 L1 di1oLo T d1141

® ®
_ ® otner \Ne'\gmed m@ﬁ‘res?id»: alpha
+ A A Xing— S1,™ >"XOUt
doo doi1 d10 Xing— SO -
Neuron potential
Matrix element weights encoded as =~ ¢wron weight _ 2
threshold o
| . - s=04
= For example to represent a trained weight of 0.512;
o ‘a‘ a =125
> Multiplication/division is also inherent to the neuron’s processing of inputs. The weight then must be expressed as

a rational number.
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A - TL )=
SR Vi Axon type O X+|n
C -, ® o
® ) X in
O @ ®
; O
8 Q\/+ D X 2 ®
Nl
5 ( Y'» ° o
_|_J
D Y » > o
O
O D o e
Ll
N o o e
ﬁ . @ o Two channels, to deal with
- positive and negative values
O . ® ® as no logic to deal with
%) signed numbers in spikes.
D The recurrent step here has a .
e delay to time in the additions Not shown in this cartoon:
— correctly (not shown) . logic to combine positive and
. negative channels after firing.

.

A +1/-1
A -1/+1
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) v NSCS KF vs numerical KF for sin(x) - 1k tick encoding window, 1ms tick
| | | | |
1 5 5 | numerical _

measurements +
NSCS

O
&

2-dimensional state tracking
Amplitude [arb]

0.01

-~
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oo
0 500 1000 1500 2000 2500 3000

Ticks [ms]

Unscaled residuals [arb]
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Input state measurement 'Ideal’ non-spiking KF state estimate

NSCS KF vs numerical KF for 1D projectile - 10k tick encoding window, 1ms tick

| | | | | |
= = = = Position

tracking

1D Projectile motion: 3-dim state

Projectile data [arb]

-~
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In binary: 100 1= 010 = 001 | |
* TrueNorth communicates data through spikes.
o \We have chosen to encode spikes in unary as it
% lends more flexibility to crossbar formulation.
— o Encoding of values can be done in space (across
7 In unary: 100 == 010 == 001 axons) as well as in time (across multiple ticks).
-
©
% 00000.000000000.Q.OOQ.O0000000000.000000000.00000000000000000000.00000
= x=1.0 - X =0.4 =8 spikes - 1 D
= . . D
1] : . L] S D
RRRRRRRRRRR R AR AR — iza=1 ° O
, L1111 blocksize=1 : | 5 D
window=20 . window=20 : —
A - : window=4
Rate encoding Rate encoding Spatial & rate encoding

frrroeeer ‘m

Although in all of these cases there are 20 spikes (or lack of spikes) per word, there is a clear tradeoff between

16 latency and axons used.
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axonType 0: s = 141 * axonType 1: s = 255

axonType 0: s = 215

To represent a weight of 0.9132991 '

Duplicating inputs over multiple axons can extend the range of the neuron weight from {+ 255}

oerformance

VWeignt precision affects

to {0255} and improve the accuracy of the output. The threshold range can also be axonType O:
extended but this is needed less often. s =137
8-bit neuron weight: s = 45 2%(8)-bit neuron weight: § = 251 7*(8)-bit neuron weight: s = 1922
— A 18-bit neuron threshold: @ = 49 18-bit neuron threshold: & = 306 18-bit neuron threshold: & = 2093

frrereee ‘m
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Using 2 axons, trained S

Using 1 axon, trained s B . . s
- weightto 354, o = 0-91837 weight to 4 5.1, o = 0-91830 Usmvg;gmgs% rained = = 0.91829909
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SIS J—— N . - Effect of word size on MSE between TN KF and ideal KF for 1D projectile
\ - 06 N T etV A o Acen[ms®] 8-bit weight [
Ly i T Wiy, . 15-bit weight @
T e — e ] 2| 18-bit weight 4
™ T 107 e Y e e N e e
o2f e S 7 | | | | | | | |
R B ol om > — S . — E
S 02 f e =
Q O E iil_ T B
= E 0.4 5 w0t ey R e S -
) ; 1 1 1 %
-0.6 | ; ; ; | > 1 : % % %
T - & 9 -
® 1o i L = o E1
= 0 f ¢
O @© 108 [t P e e § -
K 005 ] ] ] ] ]
CD 0 500 1000 1500 2000 2500 3000 ’
% _Ig Ticks [ms] Wl |- WL AN /RNy 4. S S S S _
g 5 1D Projectile tracking: 10k tick encoding, 1e-3 process noise, 1e-3 meas. noise, 1e-3 sampling rate . (o
O = el o A A T — 108 L . . . . . . . . .
_(I_-j @ 06 '+*+++ +++ """""""" . +++*+++++* L +:*++* """""" 1 ) +++ T, eXg::x {mz 2} — T 10 20 50 100 200 500 1k 2k 5k 1Ok
D E sl s ) Number of spikes used to represent word
I—IJ 02 '+ """ ++++;+ """ """""""""""""""""" """"" + ++"+' """ ++“' """"""""""""""""" """""""""""""" + 1 n 1
N R U SR S | Data representation in spikes
ool | ; ; i, 1 ; |
- o Data representation does have an effect on accuracy:

A K : : : * There is a limit to the accuracy that can be achieved using
-’ "" 0.5 | | | | | * more spikes per word for a given neuron weight register size.
: o Using more spikes per data word will increase the amount of

real estate consumed by the model or the latency of each
18 0.05 > pr— pr— - p— ~000 estimate depending on which encoding scheme is used.

Ticks [ms]
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Because of the finite size of a core If more neurons are used
for parallel computation, less are available to extend the

o

“De

| De

8 % range of the weight and threshold registers. ‘|‘ b <
£ 9 P e |1
O + |
> % Extend weight | Parallelize @
8 ) Effect of increasing blocksize on system latency and neuron weight range in one core ~ representation : I Inputs
@ @ | | | | | | | | | |
_iC_UJ O 256 [ [l 5 I
_@ - 1] ®© © o 0606 00606 006 06 06 06 0 06 0606 06 0 06 060060000 000 0 0 0 0
e . . . Ny bd I ‘- c ®
% O) S e4f b g . N—— . y % b=2 inputs
O q;) 2 | 1 i (Y | hed \BN/ = replicated q
D B s s T s S Q ® times
”C—) S - | | | | | | | | | | _ N
@ ; ;
5o HEIEE o = o w77 : o B
% g > I 3 S B 3 3 3 3 3 3 3 | —
® [
< D = S S ) A R S A B S ] ® O
= §<1 - ; ] Reset logic
A O - S S R B A" /R R . .
< _
~ R S = T T 11 B R -
>y . | A
f\ 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 fo 12 14 16 18 20 2 SDIK@S OUT
Speedup from parallel computation [arb]
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But what about computation time”? Can we increase the rate of the global ‘tick’?
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N

Neuron

/‘ TrueNorth has a mix of synchronous and asynchronous (event driven) f
logic. To enforce global order an externally generated ‘tick’ is used. This is
not a traditional clock but its edge is used to trigger the controller to begin
processing spikes in the core. Communication between cores happens
asynchronously by a 4-phase handshake.
o Each spike carries a 4-bit ‘destination tick’ (i.e. you can add a
delay to the timing, assuming the spike packet arrives when it is

sSupposed to.)
o Scheduler then stores the spikes in the correct part of the memory K Scheduler

before their allotted tick.

Controller

Router

Remainders In the neuron potential

o Scheduler error: spike delivery is ensured to be longer than max latency between source and
destination. So if chip has a large model implemented and tick is sped up - spike generator
may refuse to create file.

o Token ctrl error: If the spikes can’t be processed In time, because of the volume of spikes in a
single core.

o A TrueNorth chip can only take so many spikes per port, and then there is a frmware and
software pipeline that must match this throughput. We see on the order of 15 million spikes

ceeeery (A per second total throughput, which is 480 Mbps data rate between FPGA and TN.

‘ We never managed to cause either of the first 2 failure modes with our simple serial kaman
filter. However we did cause the last error to be thrown when we tried to increase the tick rate
from 1kHz to 10kHz. A 5kHz tick was possible.

Points of failure and speedup

20
DOI: 10.1109/TCAD.2015.2474396
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s e e ° To achieve the lower power constraints of the DARPA project the TrueNorth team has had to compromise with programming
flexibility and neuron complexity in this chip.
o Not only is it not fast enough for our computing needs it cannot be sped up.
o Although parallelism can be used to reduce latency there is an upper limit of 21x.
o The chip communicates with spikes: which must be encoded. The chip cannot be operated without an FPGA or equivalent to
encode/decode and transmit spikes. An external ‘tick” must also be supplied.
o This is not an ANN but a neuromorphic neural network, and only an approximate one and because of that cannot implement

N either real-time weight updates or back-prop.
-
O
o)
-
O
% 5 5
- - ® ® ®
G ; ; é@
CPU Neuromorphic
% o \We have adapted CPU’s, GPU’s and FPGA's for our needs. Could neuromorphic chips feature in our
toolkit in 10 years time”? Perhaps but it seems more likely we would use an ASIC ANN.

frrereee ‘m
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Questions?
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Backup: Common neuron models

McCulloch-Pitts & Hodgkin-Huxley

frrereee ‘m
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McCulloch-Pitts neuron

The McCulloch-Pitts neuron is a simplified version of the perceptron,
without a bias and with no Hebbian learning rules. It has a binary
output based on a thresholded step function.

N
Yy = step Z ;S
i=1

TrueNorth neuron

II. NEURON SPECIFICATION

Our neuron model is based on the leaky integrate-and-
fire neural model with a constant leak, which we augmented
in several ways. We begin by briefly reviewing the classic
leaky integrate-and-fire neural model, followed by an in-depth
description of our neuron model.

A. The Leaky Integrate and Fire (LIF) Neuron
The operation of the leaky integrate-and-fire (LIF) neuron
model with a constant leak is described by five basic opera-

,,,,, 1 1 1

N=256

y=step | V;(t—1)+ >  ni(t)si wij + A
1=1

DOI: 10.1109/IJCNN.2013.6707077

Hodgkins-Huxley neuron

Hodgkins-Huxley model is a biologically plausible neuron model that
accounts for leakage across the membrane from different ions and
different rates of ions. The | term is a parameterized model of the
conductance across the membrane, with at least 20 parameters.

o vit) _ _ > Lt V)

dt

| eaky Integrate-and-fire neuron

One of the simplifications to this model to make it tractable is the LIF
neuron. Leaky integrate-and-fire is a reduced complexity subset of
HH. Grouping any current independent of input as a constant leak.

AV (t)
Crn—2 = I(t)

Calling TN neurons LIF seems to be a misnomer. They
are far closer McCulloch-Pitts neurons and have none
of the time-dependent capabilities of LIF neurons
(aside from the persistent neuron potential).
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Preserving the remainder affects performance

o Spike trains cannot encode negative values. There is no easy way of dealing with signed logic that could be
implemented in neuromorphic neurons.

%) VNeuron #O VNeuron #1 Spikes in Spikes out
O

-C_I% O+1-1=0 O-1+1=0 1,1 0,0
>

Q O'1=-1 O+1'1=O 0,1 0,0
S o

8 -1+1+1-1=0 0-1=-1 1,0 0.1
%) 0+1-1=0 -1+1-1=-1 1,0 1.0
%

_Ig 0 -1+1=0

; .

@ Total spikes

O

=

O

=

O

1

| A ° |nstead, positive and negative values are dealt with in parallel trains.
freeer "" o These are combined in addition corelets, like the bar shown above for a serial addition of positive and negative
numbers.

° The recurrent network above correctly changes the neuron potential in the opposite signed neuron if the positive
03 or negative one were to spike.
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-
§ Remainders in the neuron potential
UQ; In the serial case the reset scheme for multiplication is that when a
neuron fires its potential is reduced by a. In the parallel
implementation all neurons in the block are reset by (a*# neurons that
o, spiked). The logic to implement this is shown in the xbar to the left.
CGE) — - o o Other parallel implementations either reset all neurons to zero
D after a tick, or reset all neurons to zero after a data word:
= A A thus throwing away neuron remainders.
D o Previous TN groups have shown this to work for classification
D nets - does it work for us?
3 spikes out
(™
BT e £ AW EELEER As an example let: s = 6, a = 7 to represent the trained
0+12-7=5 0+12 =12 1,1 0,0 weight of 6/7.
5+12-7=10  12+12-7-14=3 1,1 0,1 Then, for blocksize = 2 (as shown in the cartoon), if we
10+12-7-7=8  3+12-14=1 1,1 1,1 send in 14 spikes we expect:
8+12-7-7=6  1+12=13 1,1 1,1 14*(6/7) =12
= 6+12-7=11  13+12-7-14=4 1,1 1,0 spikes out. |
rereeee ‘m 11412-7-7=0  4412-14=9 11 11 Not_e _that b_ecause of the reset line the output takes an
(\ additional tick to be output.
9+12-7-7=7 2+12-14=0 1,1 1,1

shows self-reset, shows reset due to recurrent
r-r=0 r-r=0 0,0 1,1 connection from other neurons in block firing.

24 Total spikes 14 12
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\ CTL /; 100 tick encoding, ProcessNoise: 1e-3, MeasNoise: 1e-1, reset V, o ,ron after window
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g ST g e L s 0 T Preserving the remainder affects performance

e 04 D R A *h&,,;;h*‘-‘q; P A 7

<L ! + + iy N e ql-_l_:_'_!_ :_l-'_ ‘I“H‘ " ++-3I- . \ , , ,

0 A, | WY : Other TrueNorth projects do not preserve a remainder, including their
2r T . LR R 4 . D T . . . 0
-~ | | R RNN projects. Our reset crossbar, whilst adding complexity, improves
recoeere] |l o [ 1 AW A | the estimate.

— 02 I I i i i : : : :
r\‘ 2 o Again, there is a dependency on data representation in
BERKELEY LAB] Py :

SeEEEEE g number of spikes.

; o Resetting the potential after each word is not the right

oc

20 020 500 1000 1500 2000 2500 3000 solution for this use case of the chip.

Time [ticks]
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