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Abstract. For over a decade now, physical and energy constraints have limited clock
speed improvements in commodity microprocessors. Instead, chipmakers have been
pushed into producing lower-power, multi-core processors such as Graphical Process-
ing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers
and developers have been devoted to making these processors user-friendly enough to
perform general computations. However, extracting performance from a larger number
of cores, as well as specialized vector or SIMD units, requires special care in algorithm
design and code optimization. One of the most computationally challenging problems
in high-energy particle experiments is finding and fitting the charged-particle tracks dur-
ing event reconstruction. This is expected to become by far the dominant problem at
the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most
common track finding methods are those based on the Kalman filter. Experience with
Kalman techniques on real tracking detector systems has shown that they are robust and
provide high physics performance. This is why they are currently in use at the LHC, both
in the trigger and offline. Previously we reported on the significant parallel speedups that
resulted from our investigations to adapt Kalman filters to track fitting and track building
on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of
these processors and the new developments to port the Kalman filter to NVIDIA GPUs.
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1 Introduction

The Large Hadron Collider (LHC) at CERN is the highest energy collider ever constructed. It ac-
celerates two counter-circulating proton beams and brings them to collision in four locations around
a 27 kilometer ring straddling the border between Switzerland and France. By several measures it
is the largest man-made scientific device on the planet. The goal of the LHC is to probe the basic
building blocks of matter and their interactions. In 2012, the Higgs boson was discovered by the CMS
and ATLAS collaborations [1, 2]. By measuring the energy and momentum of particles produced
by the collision, we can infer the existence of massive particles that were created and measure their
properties. This process is known as event reconstruction and consists of integrating information from
different detector components. Track reconstruction, also known as tracking, is one step in event re-
construction and determines the trajectories of charged particles (“tracks”) from a set of positions of
energy deposits within the various layers of our detectors (“hits”). Tracking, in comparison to other
aspects of event reconstruction, is the most computationally time consuming, the most sensitive to
increased activity in the detector, and traditionally, the least amenable to parallelized processing. The
speed of online reconstruction has a direct impact on how much data can be stored from the 40 MHz
collisions rate, while the speed on the offline reconstruction limits how much data can be processed
for physics analyses. This research is aimed at vastly speeding up tracking.

The large amount of time spent in tracking will become even more important in the high-
luminosity era of the LHC. The increase in event rate will lead to an increase in detector occupancy
(“pile-up”, PU), leading to an exponential gain in the time required to perform track reconstruction,
as can be seen in Figure 1 [3]. In the Figure, PU25 corresponds to the data taken during 2012, and
PU140 corresponds to the low end of estimates for the HL-LHC era. Clearly our research on tracking
performance will become increasingly important during this era.

Figure 1: CPU time per event versus instantaneous luminosity, for both full reconstruction and the
dominant tracking portion. PU25 corresponds to the data taken during 2012, and PU140 corresponds
to the HL-LHC era. The time of the reconstruction is dominated by track reconstruction [3].

Accommodating this increasing need for computational power is complicated by the change
in computing architectures during the last decade. Around 2005, the computing processor mar-
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ket reached a turning point: power density limitations in chips ended the long-time trend of ever-
increasing clock speeds, and our applications no longer immediately run exponentially faster on sub-
sequent generations of processors. This is true even though the underlying transistor count continues
to increase per Moore’s law. Increases in processing speed such as those required by the time in-
creases in Figure 1 will no longer come ‘for free’ from faster processors. New, parallel processors
instead are aggregates of ‘small cores’ that in total still show large performance gains from generation
to generation, but their usage requires reworking of our mostly serial software to exploit these gains.
The processors in question include ARM, Graphical Processing Units (GPU) and the Intel Xeon and
Xeon Phi.

In what follows, we first update the reader about the algorithms we target and the performance
level we now obtain on Xeon and Xeon Phi. We then explain the challenges and the steps we took in
porting these algorithms to GPUs along with some initial performance assessments.

2 Kalman Filter Tracking

The algorithm we are targeting for parallelized processing is a Kalman Filter (KF) based algorithm [4].
KF-based tracking algorithms are widely used since they are fast and incorporate estimates of multiple
scattering in the detector material directly into the trajectory of the particle. In addition, a combina-
torial KF provides an elegant way to resolve ambiguities when considering multiple hits to add to a
track [5, 6]. Other track finding algorithms, more naturally suited to parallelization and coming from
the image processing community, have been explored by others. These include Hough Transforms and
Cellular Automata, among others (see, for instance, [7]). However, these are not the main algorithms
in use at the LHC today, whereas there is extensive understanding on how KF algorithms perform.
KF algorithms have proven to be robust and perform well in the difficult experimental environment of
the LHC [3]. Rather than abandon the collective knowledge gained from KF algorithms, we wish to
extend this robust tool by porting KF tracking to parallel architectures.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides the
initial estimate of the track parameters based on a few hits in a subset of layers. Realistic seeding
is currently under development and will not be reported here. Building then collects additional hits
in other detector layers to form a complete track, using the combinatorial KF as a basis for deciding
which hits to consider and keep. Track building is by far the most time consuming step of tracking,
as it requires branching to explore potentially more than one track candidate per seed after finding
compatible hits on a given layer. After hits have been assigned to tracks in each layer, a final fit with a
KF and smoother can be performed over each track to provide the best estimate of its parameters and
to compute a measure of the track quality in terms of a χ2.

To realize performance gains, we need to exploit two types of parallelism: vectorization and par-
allelization. Vectorization aims to perform a single instruction on multiple data at the same time by
performing the same operation across different data in lockstep. Parallelization aims to perform differ-
ent instructions at the same time on different data. In this work, parallelization is done by distributing
the workload between threads, which are concurrent lightweight processes sharing resources (for in-
stance, memory). The challenge to vectorization is that KF tracking may branch to explore multiple
candidates per seed, interfering with the lockstep synchronization required for vectorization perfor-
mance. The challenge to parallelization is that hit occupancy in a detector is not uniformly distributed
on a per event basis, creating the potential for workload imbalances across threads. For these and
other reasons, KF tracking cannot be ported in a straightforward way to run in parallel on many-core
processors. Past work by our group has shown progress in porting sub-stages of KF tracking to sup-
port parallelism in simplified detectors (see, e.g. our presentations at ACAT2014 [8], CHEP2015 [9],
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and NSS-MIC2015 [10]). As the hit collection is completely determined after track building, track
fitting can repeatedly apply the KF algorithm without branching, making this the ideal place to start
in porting KF tracking to Xeon and Xeon Phi, with our first results shown at ACAT2014 [8]. In more
recent works (CHEP2016 [11], CtD2016 [12]), we discussed the improvements made to target a more
realistic geometry. Profiling and recent computational optimizations were also outlined.

2.1 Optimized Matrix Library Matriplex

The computational problem of KF-based tracking consists of a sequence of matrix operations. Un-
like [4], we parameterize the measurement state and the track state in global coordinates with matrices
of size N ×N = 3× 3 and 6× 6, respectively. To allow maximum flexibility for exploring SIMD oper-
ations involving many small-dimensional matrices, and to decouple the specific matrix computations
from the high level algorithm, we have developed a matrix library, Matriplex, which relies on a
matrix-major memory layout (a layout where elements with the same index but from different ma-
trices are stored consecutively). A more complete description of the Matriplex library can be found
in the work we presented at ACAT2014 [8]. The adaptation of this data structure to GPUs will be
discussed in section 4.

3 Track Building on Xeon and Xeon Phi

Combinatorial KF track building shares the same core KF calculations as track fitting, but has two
major complications for utilizing vectorizable operations compared to track fitting. The first such
problem is the “nHits” problem: when performing the KF operations, the hit set for a given track
candidate in building is undefined and one potentially has to choose between O(104) hits per layer.
The second problem is the “combinatorial” problem: when more than one hit on a given layer is
compatible with a given input candidate, branching occurs to explore all possible track candidates up
to some cutoff number of candidates per seed.

The key to reducing the nHits problem is to partition the tracks and hits spatially in order to reduce
the search space for a given track. We partition space without reference to the detector structure, plac-
ing hits in each layer into directionally projective bins. The bins provide a fast look-up of compatible
hits in a layer for a given track given the estimate from the KF.

With regard to the combinatorial problem, we first developed track building to add only the best
hit out of all compatible hits on a layer for each track candidate. By definition, then, each seed only
produces one track and does not require copying of track candidates to explore multiple hits per layer,
as in the full combinatorial KF approach. The best hit is defined as the hit that produced the lowest
χ2 increment to the track candidate. The vectorization and parallelization performance of this “best
hit” approach were presented at CHEP2015 [9]. After demonstrating the feasibility of track building
in the best hit approach, we then allowed for more than one track candidate per seed per layer to be
produced, as in the full combinatorial KF approach and presented the results at CtD2016 [12].

3.1 Memory Management

With the full combinatorial approach in place, we performed extensive studies of the performance of
our software, in terms of both the physics performance and the code performance. For the latter, we
used the Intel VTune 2016 [13] suite of tools to identify bottlenecks and understand the effects of our
optimization attempts. In particular, as can be expected, we determined that memory management is
of critical importance.
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In the full combinatorial approach, if multiple compatible hits are found for a track candidate,
it becomes necessary to make copies of that track for each compatible hit. To mitigate the impact
from this serial work, we moved copying outside of all vectorizable operations into what we term the
“clone engine”. The clone engine approach only copies the best N track candidates per seed after
reading and sorting a bookkeeping list of all compatible hits. This is in contrast to a first attempt at
the combinatorial KF which copied a candidate each time a hit was deemed compatible, then sorting
and keeping only the best N candidates per seed after all the possible hits on a given layer for all
input candidates were explored. A more detailed discussion of this work on memory management
and impacts on performance was presented at NSS-MIC2015 [10] and at CHEP 2016 [11]

3.2 Results

We present here the latest vectorization and parallelization benchmarks in track building since
CHEP 2016. Results are given in average time per event. For each event, building proceeds from
10, 000 seeds that are derived from the first three hits of each simulated track in the event. We used a
simplified detector geometry consisting of equally spaced, fixed length concentric cylinders. Tracks
are simulated using a set of in-house simulation routines replicating the detector resolution via Gaus-
sian smearing of the hit positions. Figure 2 contains two plots displaying the performance obtained
on a computer with two Sandy Bridge multi-core processors (E5-2620 @ 2.00GHz). Plot 2a shows
the vectorization performance of three different track building approaches, as functions of the number
of vector units enabled while using a single thread. Plot 2b shows the parallelization performance of
the same track building approaches, as functions of the number of threads enabled using Intel Thread
Building Blocks (TBB) [14]. The Xeon machine we are using has 12 physical cores which appear to
be 24 logical cores to the OS due to hyperthreading being enabled. The slight deviation from ideal
scaling before hyperthreading arises from load balancing issues between threads. The large deviation
from ideal scaling after enabling hyperthreading is due to resource limitations: the two threads per
core are contending for the same instruction pipelines and data caches. Even so, nearly eightfold
speedup is seen for 21 threads.

The blue curve is the “best hit” approach described previously. Naturally, this approach will have
the lowest absolute time in comparison to the two fully combinatorial approaches, the red and green
curves. The green curve is the original approach to combinatorial track finding where the copying of
the track candidates is inside the vectorizable KF operations. The red curve shows the clone engine
approach, which moves the serial work of copying outside of the KF vectorizable operations. As ex-
pected, the clone engine approach has a lower absolute time and higher speedup than the original. It
is important to note that while the best hit approach is the fastest, the physics performance has ineffi-
ciencies in hit finding and track finding from not being fully able to explore multiple track candidates
per seed. Even in our simplified model, this behavior is already apparent, and the best hit approach
is expected to become even more inefficient when using more realistic detector effects. For reference,
on this simplified problem, the best hit approach approximately has as an efficiency of 93% and a fake
rate of 3%, while the combinatorial approaches have efficiencies over 99% and fake rates under 1%.
(Candidates matching fewer than 7 hits of a simulated track count as neither successes nor fakes.)

Figure 3 shows the same plots as Figure 2, now with Xeon Phi (Knights Corner 7120P). Figure 3a
shows the vectorization results with Xeon Phi which has AVX-512 vector registers that are twice as
wide as those in Xeon. With one thread enabled, Xeon Phi sees the same 1.5× to 2× speedup as
Xeon. As seen on Xeon, the best hit approach still has the lowest absolute timing. Figure 3b displays
the parallelization performance, with Xeon Phi, with the full vector width of 16 floats enabled using
TBB. The Xeon Phi we are using has 61 physical cores requiring 122 independent instruction streams
for full utilization, due to the fact that the Xeon Phi issues instructions for a given thread every other
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(a) Impact of vector size on performance. Only one
thread is enabled.

(b) Impact of the number of threads on perfor-
mance. The full vector size (8 floats) is enabled.

Figure 2: Average time per event of 10, 000 tracks on Xeon (Sandy Bridge E5-2620) processors.
Both plots show results for three different track building approaches. The blue curve is the “best hit”
tracking approach. The green and red curves use the full combinatorial approach in track building.
The red curve moves the copying of tracks outside of the vectorizable operations.

(a) Impact of vector size on performance. Only one
thread is enabled.

(b) Impact of the number of threads on perfor-
mance. The full vector size (16 floating points) is
enabled.

Figure 3: Average time per event of 10, 000 tracks on Xeon Phi (Knights Corner 7120P) coprocessors.
Both plots show results for three different track building approaches. The blue curve is the “best hit”
tracking approach. The green and red curves use the full combinatorial approach in track building.
The red curve moves the copying of tracks outside of the vectorizable operations.

clock cycle. Therefore, to keep a given physical core busy every clock cycle, one has to schedule
two threads per core alternating in instruction execution. A form of hyperthreading is also present
on Xeon Phi, yielding a total of 244 hardware threads (logical cores). Overall, a factor of about 30×
speedup is observed.
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4 Porting KF based algorithms to the GPU

The challenges to port the Kalman Filter to the GPU are similar in principle to those on x86 multi-core
platforms. The parallelization and vectorization issues we encounter are only exacerbated by the fine
grain parallelism required by graphical processors. In particular, the large core count of GPUs and
their thread scheduling policies force a large number of threads to be concurrently scheduled. It also
implies that coping with branching is critical, as threads of a warp (a group of 32 consecutive threads)
execute the same instruction at the same time.

We have followed the same incremental strategy to move onto GPU architectures as the one we
adopted for Xeon and Xeon Phi architectures. We first started by studying and choosing a data struc-
ture adapted to operations on many small matrices. We then ported our algorithms, starting from track
fitting: its simpler nature made it easier to understand the requirements of porting KF based algorithms
to GPUs. Armed with this knowledge, we made a first stab at porting track building algorithms. The
best hit approach —where only the candidate yielding the best χ2 is considered at each layer, for
each seed —is the natural one to develop, as it introduces a limited number of new problems. The
main issue is to understand how to deal with numerous memory indirections. Pursuing again the same
stepwise improvements as those done for x86 processors, we next looked at the combinatorial algo-
rithm, where multiple candidates per seed are considered at each layer. This introduces the additional
problem of branching.

4.1 Memory Layout

Matriplex has been found to be the most efficient memory layout for GPU, as it naturally offers
coalescent accesses. Coalescent accesses occur when, in the case of 4-byte elements, 32 consecutive
threads request 32 consecutive elements from global memory. In conjunction with aligned memory
accesses, it has the desirable effect of allowing for a single memory transaction instead of 32 separate
ones. As a global memory (the large off-chip memory) request takes between 200 and 400 clock
cycles to complete, this leads to significant gains. In general, poor performance can be expected
unless memory accesses are coalescent. A key difference with CPU Matriplex is the number of
matrices grouped within such a data structure. Instead of being tailored to the dimension of a hardware
vector unit, it contains as many matrices as possible in order to increase the parallelism exposed to
the device. Figure 4 shows some results of a study we conducted to determine the best memory
layout, considering that a large part of the KF operations involves multiplying small matrices. In all
cases, shared memory is used to reduce the number of global memory transactions, and this has a
dramatic impact on the performance, as much as two orders of magnitude. By using the Matriplex
data structure, we are able to outperform the finely tuned and batched cuBLAS approach. As a results,
all our subsequent work has been based on the GPU version of the Matriplex data structure.

4.2 Track Fitting on the GPU

As mentioned, track fitting is suitable for developing a better understanding of the requirements to ob-
tain performance on an unexplored hardware architecture, such as GPUs. Porting from C++ to CUDA
is made tedious by the lack of a library matching the C++ STL and usable from device code. The
existing options (for example NVIDIA Thrust [15]) are higher level abstractions to be used from the
host and have to be casted to raw pointers when passed to device kernels. The process of optimizing
the code so that it runs fast enough is often orders of magnitude harder than the process of rewriting
to CUDA. In what follows, we choose the most straightforward way to map computations to the GPU
by using one GPU thread per track during fitting.
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Figure 4: Performance comparison of different memory organizations for multiplying 6 × 6 matrices.
It shows the time as a function of the number of 6 × 6 matrix multiplications. The orange and purple
lines use an array of matrices, while the green line uses the Matriplex data structure.

There is a number of places where optimization can occur. The most common places are the
kernels themselves (i.e. the CUDA routines) and the data transfers between the host (CPU) and the
device (GPU). We have observed that optimizing kernels brings significant gains. The most beneficial
kernel-level optimizations were using read-only caches, merging kernels to limit the launch overhead
of many small kernels, and favoring registers over shared memory when possible. These kernel op-
timizations resulted in a speedup of roughly 8 with respect to a naive implementation. Reorganizing
data, in particular to fill Matriplex structures, is costly on the GPU because of the large number of
memory indirections it requires. For track fitting, we have chosen to let this reorganization happen on
the CPU, which is more suited to this task. By launching kernels asynchronously inside streams, we
are able to overlap these reorganizations with actual computations. An additional lesson we learned is
the need to fill the GPU by fitting tracks of more than one event concurrently. Indeed, one event is too
small to completely fill the GPU by itself. By using multiple CPU threads, each of them associated
with a list of events to process, significant improvements are obtained. Figure 5 shows the impact of
concurrent fitting. For small Matriplex sizes, the kernels perform poorly due to a low compute inten-
sity. For larger sizes, multiple CPU threads are better able to fill the GPU, and performance improves
by a factor of roughly 3.

4.3 Track Building on the GPU

Track building is a more complex problem to deal with on multi- and many-core architectures. We
approach it with two different algorithms. The first one, “best hit” considers a single candidate hit
for each seed at each layer. The second one is a combinatorial algorithm, keeping track of multiple
candidates for each seed at each layer, where candidates are ranked by the number of hits found and
by their χ2. Note that only the “clone engine” approach has been attempted on GPUs: the other
combinatorial algorithm involves too many memory copies to be even considered.

Compared to track fitting, the “best hit” approach increases the complexity by adding many mem-
ory indirections. For each track, hits within η bins have to be considered. This implies frequent
reorganizations into Matriplex data structures, making the overlapping of reorganizations and com-
putations not possible anymore. Reorganizing hits into Matriplex is consequently done on the GPU.
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Figure 5: Concurrent fitting processes on the GPU. Different plots show different number of CPU
threads concurrently streaming events to the GPU. Time is plotted as a function of the Matriplex size.

As in track fitting, the parallelization relies on having one GPU thread per candidate. Modular and
nested data structures can fragment data transfers, even if they are asynchronous, and will in most
cases have to be redesigned to a shallower hierarchy. A data structure with multiple layers also forces
the inconvenience of having to use additional arrays to keep track of pointers to GPU memory. As a
side note, newer versions of CUDA offer unified memory as a way to transparently access data that
might be located either in the main RAM or in the GPU global memory. The cost of such a conve-
nience has been greatly reduced over the past years, but the frequency of these transfers dictates a
more controlled approach, using the knowledge we have to pre-transfer data asynchronously.

The combinatorial approach generates even more complications when aiming at performant GPU
computations. Having multiple candidates per seed at each layer means that conditional branches are
encountered frequently. Since warps always schedule the same instruction at a given time, branches
serialize the warp execution when the condition differs for each thread of the warp. We address
this issue by defining a data structure to store information about multiple candidates. While on x86
processors standard C++ vectors are used, on GPUs the underlying choices are more limited and
boil down to C-arrays. Our implementation takes the form of a heap based approach, often used to
implement priority queues. Details are shown in Figure 6. A heap is a complete binary tree and can
be implemented as a 0-based array where an element at index i has children at indexes 2i + 1 and
2i + 2. This data structure uses shared memory to avoid extraneous requests to global memory. At
the beginning of each layer, a heap is assigned to each track candidate to store the best suited hits.
Each heap is accessed by a single thread, and elements are consecutive in the vertical direction to
avoid bank conflicts. At the end of each layer, new overall candidates for the best track need to be
found by sifting all the heaps. Figure 7 explains this sifting process. A number of heaps are sorted
and their best elements are push-popped into non-sorted heaps. The process is repeated until a single
heap remains. The last heap contains information about the bests of all the candidates and is sorted in
order to proceed to the next layer. Initially, heaps are filled with guards, allowing a different number
of potential hits to be considerate per initial track candidate. The number of potential hits is limited
by the statically defined heap size.
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A large part of the development effort to port track building to GPUs has been to bring the perfor-
mance to a level comparable to the one observed on the extensively tuned Xeon version. Results for
the “best hit” approach to track building are shown on Figure 8a. Considering the computational time
as well as the data transfer, the GPU version is about 3 times faster than a single-threaded execution
on a Sandy Bridge (SNB) processor but about 4 times slower than an execution using 24 hyper-
threads. The performance comparison is even more severe for the combinatorial version, as shown in
Figure 8b. It is a consequence of the large number of synchronizations and branch predictions.
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Figure 8: Track building performance comparison between the GPU version and the optimized Xeon
version. The GPU is a NVIDIA K40 and the Xeon a Sandy Bridge E5-2620

Several future developments can improve the performance of the GPU code. First, concurrent
events should be adapted to track building because this will help to fill the GPU’s stream multiproces-
sors more efficiently, as we have seen for track fitting. Next, alternative parallelization patterns need
to be studied to completely understand what are the most important performance-driving factors. For
instance, using one GPU thread per seed may reduce the amount of synchronization required between
threads, but will make concurrent event processing even more critical. Finally, data transfers need to
be drastically improved as they now account for almost half of the track building wall time.

5 Conclusion and Outlook

We have made significant progress in parallelized and vectorized Kalman Filter-based tracking on
multi- and many-core processors. On Xeon and Xeon Phi, improvements have been made to include a
more realistic geometry. These changes were not discussed here as they are not reflected on the GPU
side, yet. On all platforms many challenges remain to fully exploit the computational power of these
highly parallel architectures. For instance, on the GPU, the bottlenecks we will have to address next
are data transfers between the host and the device, as well as branching and synchronization within
kernels. The project has produced promising results; however, much work remains.
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