Theory, Astrophysics and Small Accelerators for ENSAR2 Joaquin Gomez Camacho Centro Nacional de Aceleradores (U. Sevilla, J. Andalucia, CSIC) Sevilla, Spain

NuSPRASEN Workshop,

December 6th, 2016 - CERN-ISOLDE

Summary

• Nuclei in external fields:

Time structure vs Energy of Large Scale Facilities.

• Astrophysics and Coulomb break-up:

Collision time vs temperature of neutron stars.

• Solid He Targets for exotic beams:

Applications vs basic science in Small Scale facilities.

	Elab (MeV)	v/c	Theta(deg) R(0)=15 fm	T_coll (10^-22 s)	E_x (MeV) P(E_x) = 0.01
ISOLDE	40	0.088	81	13.9	3.6
GANIL	200	0.194	9.8	5.4	7.5
GSI-FAIR	2200	0.568	0.83	1.8	13.7

Coulomb break-up as a tool for structure

- B(E,L) values determine the absorption of photons by nuclei.
- For short lived nuclei, "real" photon absorption can be substituted by "virtual" photon absorption in coulomb dominated collisions.
- EPM: Coulomb break-up cross sections are proportional to the B(E,L) distribution.

1st order, Semiclassical, Coulomb trajectory (EPM)

All orders, Quantum, Coulomb+nuclear (XCDCC)

• Is EPM accurate?

Conclusions

- We can tune the strenght (angle) and the time scale (energy) of the electric field
- EPM is not accurate.
 (X)CDCC should be used to analyze data.
- High order coupling effects are important, specially at low energies
- Opportunity: Study electric susceptibility of nuclear media as a function of collision time

Inclusive Coulomb break-up as a tool for astrophysics

- Astrophysical photoemission reaction rates are a thermal average of the B(E1) distribution, governed by the temperature T.
- Inclusive Coulomb break-up (In the EPM) is an exponential average of the B(E1) distribution, governed by the collision time t.
- When kT= 1/t, both observables are strongly correlated.
- Can we directly measure Astrophysical reaction rates, from the adequate inclusive Coulomb break-up?

Reaction rates depends on electromagnetic transition probability distributions

At first order: $\langle R_{abc}(\varepsilon) \rangle(T) \simeq \mathcal{N}_1(T) \int_{|\varepsilon_B|}^{\infty} d\varepsilon_{\gamma} \ \varepsilon_{\gamma}^3 \frac{dB(E1)}{d\varepsilon} e^{-\frac{\varepsilon_{\gamma}}{k_B T}}$

Reduced breakup probability in the EPM:

Collision time:

$$P_r(t) = \int_{|\varepsilon_B|}^{\infty} d\varepsilon_{\gamma} \ \varepsilon_{\gamma} \frac{dB(E1)}{d\varepsilon} e^{-t\varepsilon_{\gamma}} t^2 \qquad t = \frac{a_0}{\hbar v} \left(\pi + \frac{2}{\sin(\theta/2)}\right)$$

Both observables strongly correlated when $t=1/(k_B T)$

$$\langle R_{abc}(\varepsilon)\rangle(T) = \mathcal{C} t^3 e^{|\varepsilon_B|t} \frac{d^2}{dt^2} \left(\frac{1}{t^2} P_r(t)\right) \qquad \qquad \mathsf{PRC} \ \mathbf{93} \ (\mathbf{2016}) \ \mathbf{041602}$$

J. Casal et al.

Explore astrophysical temperatures by measuring inclusive Coulomb breakup at energies below the barrier and forward angles

Application to ¹¹Li->⁹Li+2n

Astrophysics question: In a neutron star environment, what is the rate for alpha particles to absorb 2 neutrons, to form 6He?

- Can we directly measure Astrophysical reaction rates, from the adequate inclusive Coulomb break-up?
- We could reach temperatures as low as 2 GK, but:
- We need to separate 1 B.U. on 10000 elastic
- EPM may not be accurate.
- Non-Elastic Break-up shuold be taken into account

"Solid" He targets for exotic beam experiments

- In material science, magnetron sputtering is an effective procedure to produce thin films of Si and other metals.
- The films contain a large fraction of the inert gas (4He).
- ENSAF facilities (i.e. CNA) routinely analyze thin films by IBA techniques (PIXE, RBS)
- 4He is an ideal probe to investigate other nuclei by scattering.
- For exotic nuclei, 4He would make an ideal target (Inert, spin 0, Isospin 0).
- However, 4He is a gas and does not form solid molecules.
- Can we use thin films, rich in 4He, as targets for exotic nuclei?

Solid He targets for Nuclear Physics Experiments

- V. Godinho, F.J. Ferrer, B. Fernández, J. Caballero-Hernández, J. Gómez-Camacho, A. Fernández <u>Amorphous-Si:He targets with He trapped in closed porosity</u>
 - Magnetron Sputtering to produce a-Si:He, with homogeneously distributed throughout the film thickness
 - □ high He/Si low O/Si content
 - > Reproducibility and stability (fluence, temperature & aging) of the targets
 - > Targets deposited over a variety of substrates or Self-supported targets

	Present work	Vanderbist et al.	Raabe et al.	Ujic et al.
Technique	Magnetron sputtering	Ion implantation	lon implantation	lon implantation
Metal (×10 ¹⁵ at/cm ²)	(Si) 9250	(AI) 1100	(AI) 4200	(AI) 1200
He (×10 ¹⁵ at/cm ²)	4060	275	270	130
O (×10 ¹⁵ at/cm ²)	700	60	100	Not mentioned
He/M	0.44	0.25	0.06	0.11
O/He	0.17	0.22	0.37	Not mentioned

Solid He targets for Nuclear Physics Experiments

V. Godinho, F.J. Ferrer, B. Fernández, J. Caballero-Hernández, J. Gómez-Camacho, A. Fernández

Supported (over Si) *a-Si:He target* ⁴He(¹H,¹H) ⁴He Elastic scattering Backscattering ($\theta > 90^\circ$) 12000 -10000 He 8000 Counts 6000 Si 4000 Si substrate Au 2000 1500 2000 500 1000 Energy (keV) TEM cross-setional view p-EBS Ep = 2000 keV; θ = 165 ° 0.30 Present data 165° Nurmela 170° 0 Δ Freier 164° Cross section (barn/sr) 0.25 Miller 164 Kraus 163° Barnard 159° Ô Schwandt 167° 0.20 Lu 165° 0.15 A Cook and the second s 0.10 0.05 0 Energy (MeV) Differential scattering cross-section ${}^{4}\text{He}({}^{1}\text{H},{}^{1}\text{H}){}^{4}\text{He}; \theta = 165^{\circ}$

Self-supported a-Si:He target

 $\frac{^{4}\text{He}(^{6}\text{Li}, ^{6}\text{Li})^{4}\text{He Elastic scattering}}{Forward scattering (θ < 90°).}$

CNAnmat_µ

Self-supported thin film mounted on the holder for measurements

p-EBS Ep = 2000 keV; θ = 165 °

Can we use thin films, rich in 4He, as targets for exotic nuclei?

- Yes!
- In progress: changing the substrate by heavier nuclei, building thicker targets, ...

One physics case:

(4He, 6He) to check long range n-n correlation, complementary to (p,t).

Acknowledgments

- A. Moro, J.A. Lay (U.Sevilla)
- J. Casal, M.Gallardo, J.M. Arias (U. Sevilla), A.M. Sanchez-Benitez (U. Huelva)
- F.J. Ferrer, B. Fernandez (CNA Sevilla), V. Godinho, J. Caballero (ICMSE Sevilla)
- 6He, 11Li, 11Be collaborations (IEM-Madrid, Huelva, Sevilla, Catania, TRIUMF, Aarhus, ISOLDE, CRC Louvain, Leuven, York, Birmingham, ...)