

Direct and resonant reaction studies for nuclear astrophysics at HIE-ISOLDE

Alex Murphy

University of Edinburgh IPPP Durham Senior Experimental Fellow

ISOLDE: A Facility for Nuclear Astrophysics

- The capabilities of REX-ISOLDE are well matched to the needs of nuclear astrophysics
- Stars generally have long lifetimes

→ Nuclear reactions are slow, energies are below the Coulomb barrier, cross sections are very small, the nuclei involved are stable

- Occasionally, stars undergo rapid transitions
 - → Nuclear reactions are faster, energies approach the Coulomb barrier, cross sections are not quite so small, radioactive nuclei are involved

Nuclear Astrophysics experiments often require intense stable and radioactive ~MeV/u beams

Novae & X-Ray bursters

- About ½ of all stars are in binary systems
- For certain separations and mass ranges, this configuration leads to (inevitable) thermonuclear nuclear runaway scenarios
 - Novae: Accretion on to CO or ONe WD
 - X-Ray burster: Accretion on to a neutron star
- Novae produce significant contributions of some isotopes to the ISM
- Possibilities for gamma ray observations.
- Specific nuclear reactions can affect explosion onset, ejecta abundances, etc

¹⁴O(α,p)¹⁷F

- May trigger break out from the hot CNO cycles
- Direct measurement difficult
- Expected to be dominated by a single 1⁻ resonance
- Γ_{tot} = 50 keV via ¹⁷F(p,p)
- Γ_{α} =3.2 eV via ¹⁷F(p, α)
 - But this only give the ¹⁷Fgs production contribution
- Hence a study of
 ¹⁷F(p,p')¹⁷F : He *et al.* Phys. Rev. C
 80 042801R (2009)

ENSAR-2 NUSPRASEN WORKSHOP CERN 6 December 2016

ENSAR-2 NUSPRASEN WORKSHOP CERN 6 December 2016

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 80, 042801(R) (2009)

Measurement of the inelastic branch of the ${}^{14}O(\alpha, p){}^{17}F$ reaction: Implications for explosive burning in novae and x-ray bursters

J. J. He,^{1,2} P. J. Woods,¹ T. Davinson,¹ M. Aliotta,¹ J. Büscher,³ E. Clement,⁴ P. Delahaye,⁴ M. Hass,⁵ D. G. Jenkins,⁶ V. Kumar,⁵ A. St. J. Murphy,¹ P. Neyskens,³ R. Raabe,³ A. P. Robinson,⁶ D. Voulot,⁴ J. van der Walle,⁴ N. Warr,⁷ and F. Wenander⁴ ¹School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom ²IMP, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China ³Institut voor Kern-en Stralingsfysica, K. U. Leuven, B-3001, Leuven, Belgium ⁴CERN, CH-1211 Geneva 23, Switzerland ⁵Weizmann Institute of Science, Rehovot, Ii-76100, Israel ⁶Department of Physics, University of York, Heslington, Y010 5DD, United Kingdom ⁷Institut fur Kernphysik, Universitaet Koln, Koln, D-50937, Germany (Received 3 August 2009; published 27 October 2009)

A measurement of the inelastic component of the key astrophysical resonance in the ${}^{14}O(\alpha, p){}^{17}F$ reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the ${}^{14}O(\alpha, p){}^{17}F$ reaction rate. The current results for the reaction rate confirm that the ${}^{14}O(\alpha, p){}^{17}F$ reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the to CNO cycles under the more extreme conditions found in x-ray bursters.

042801-1

DOI: 10.1103/PhysRevC.80.042801

PACS number(s): 23.20.Lv, 21.10.Dr, 26.50.+x, 27.30.+t

Astrophysical x-ray bursts have been interpreted as being generated by thermonuclear explosions in the atmosphere of an accreting neutron star in a close binary system [1]. These bursts are characterized by sudden enormous spikes in x-ray emission, lasting a few seconds, with repeating cycles on a time scale of hours to days. These spectacular astrophysical phenomena are now being studied in detail in a number of x-ray satellite observatory missions, including Chandra, XMM-Newton, and Integral. The extreme temperatures and densities open up new pathways for increased energy generation and nucleosynthesis. Thermal runaway reactions can be ignited through both the triple- α reaction and breakout from the hot carbon-nitrogen-oxygen (CNO) cycles into the rapid proton capture process (rp process). The rp process may thence proceed as far along the proton drip line as the Sb and Te isotopes, and may possibly be the origin of p nuclei, such as ⁹²Mo and ⁹⁶Ru [2,3]. In both the triple-α and CNO breakout mechanisms, energy generation increases rapidly as a function of temperature, and hence the rate of energy release can increase faster than the rate of cooling, ultimately leading to x-ray bursts [4]. In the period between bursts, energy is generated at a constant rate by the β -limited hot CNO cycles, the half-lives of the waiting point nuclei 14O and 15O being 71 and 122 s, respectively. As a consequence, novae ejecta are rich in the daughter products 14N and 15N. However, in x-ray burst scenarios, temperatures are such that these waiting points can be bypassed. In particular, the ¹⁴O(α , p)¹⁷F reaction can trigger the breakout from the hot CNO cycles via the ${}^{17}F(p,\gamma){}^{18}Ne(\alpha,p){}^{21}Na \text{ sequence [5]}.$

The ${}^{i4}O(\alpha, p){}^{17}F$ reaction rate is thought to be dominated by capture onto a single 1⁻ resonance $E_r = 1.04$ MeV, corresponding to an excited state in ${}^{18}Ne$ at 6.15 MeV [6]. The total width of the state is dominated by proton emission ions on protons in inverse kinematics [7]. The time reverse reaction ${}^{17}F(p,\alpha){}^{14}O$ was later studied in inverse kinematics to obtain the first measurement of the much weaker partial α -decay width of the resonance [8]. A limitation of this latter approach is that it cannot take into account the inelastic reaction channel corresponding to the production of the first excited state at 0.495 MeV in ¹⁷F in the astrophysical reaction. This reaction branch can be measured by studying the proton inelastic scattering reaction ${}^{17}F(p,p'){}^{17}F$, which is the method adopted in the present study. It is also the method reported in Ref. [9]. In that study, a thin (CH2), target was bombarded with 17F ions in the region of the resonance energy $(E_{v.m.} = 2.22 \text{ MeV for the}^{17}\text{F} + p \text{ entrance reaction channel}),$ and inelastic and elastically scattered protons were detected and separated in energy in an annular silicon detector array [9]. A value of the ratio of inelastic scattering to elastic scattering of 2.4 was reported, indicating the inelastic contribution is dominant, although at the time of writing the present report no full value with error had been published.

and has already been studied using the elastic scattering of 17F

The present experiment was performed at the CERN Radioactive Beam Experiment On-Line Isotope Mass Separator (REX-ISOLDE) facility [10]. A fully stripped ¹⁷F⁶⁺ ion beam was selected to avoid intense isobaric contamination from ¹⁷O ions. The beam energy 44.2 MeV ($E_{e.m.}$ = 2.46 MeV) was chosen, so ions entered just above the resonance energy and stopped inside a ~40 μ m thick (CH₂)_n target. Elastic and inelastically scattered protons were detected silicon strip detector (CD) system, consisting of four Micron Semiconductor Ltd. (MSL) type QQQ/2, ~35 μ m thick, ΔE detectors backed by four MSL type QQ/1, ~0.5 mm thick, E

Found $\Gamma_{p0} \sim \Gamma_{p'}$

 \rightarrow 1⁻ resonance enhances the reaction rate, contributing approximately equally to the groundstate component.

However, it's unlikely the ¹⁴O(α , p)¹⁷F reaction bypasses the β + decay of ¹⁴O in the hCNO cycles an novae temperatures and densities

Further ongoing discussions, see e.g. D. W. Bardayan, et al. PRC 85 065805 (2012)

ENSAR-2 NUSPRASEN WORKSHOP CERN 6 December 2016 0556-2813/2009/80(4)/042801(3)

42801(3)

©2009 The American Physical Society

Core Collapse Supernovae

- Core Collapse Supernovae... are just exciting!
- There remains fundamental uncertainty in the explosion mechanism
- Gamma-rays from ⁴⁴Ti decay are one of the few ways in which data could improve models
- Major recent investment in gamma-ray observing satellites is producing new high-quality observational data
- The main nuclear uncertainty is the ⁴⁴Ti(α ,p)⁴⁷V reaction
- ⁴⁴Ti reclaimed from irradiated parts at PSI is now available
- So... perform a direct measurement of ⁴⁴Ti(α,p)⁴⁷V

Motivation - stronger than ever!

- First NuSTAR observation of Cas-A 1.5±0.3 x10⁻⁴ M_☉ of ⁴⁴Ti
- · Detailed mapping of turbulence.
- Unexpected separation of ⁴⁴Ti and Fe (in models, they are produced in the same zones)

	Nature International weekly journal of science	► Advanced search				
	Home News & Comment Research Careers & Jobs Current Issue Archive Audio & Video For	r Authors				
	Archive Volume 506 Issue 7488 Article					
	Take our survey for a chance to win a MacBook Air	Find out more 🔻 🕻				
	NATURE LETTER < 😪 🗟 🔒	Editor's summary تعربية Most simulations of stellar core collapse events indicate that the evolutions are sevented in but the				
	Asymmetries in core-collapse supernovae from maps of radioactive ⁴⁴ Ti in CassiopeiaA	resulting shapes differ in the various models. Brian Grefenstette <i>et al.</i> analysed the distribution				
	B. W. Grefenstette, F. A. Harrison, S. E. Boggs, S. P. Reynolds, C. L. Fryer, K. K. Madsen, D. R. Wik, A. Zoglauer, C. I. Ellinger, D. M. Alexander, H. An, D. Barret, F. E. Christensen, W. W. Craig, K. Forster, P. Giommi, C. J. Hailey, A. Hornstrup, V. M. Kaspi, T. Kitaguchi, J. E. Koglin, P. H. Mao, H. Miyasaka, K. Mori, M. Perri \pm et al.	Associated links News & Views Astrophysics: Lopsided stellar death by Laming				
	Affiliations Contributions Corresponding authors					
F	e x-rays st 2013 Accepted 13 December 2013 Published online 19 February 2014	TalkTalk				

Orange - me

ENSAR-2 NUSPRASEN WORKSHOP CERN 6 December 2016

Blue - measured ⁴⁴Ti

1157 keV

⁴⁴Ca

68 keV

44Sc (4h)

	Observations			$x10^{-4} M_{\odot}$
		Cas-A	NuSTAR	1.25(0.3)
		0140074	Nature 506 (2014) 339-342	
		SN1987A	NUSTAR Science 348 (2015) 670 671	1.5(0.3)
		Cas-A	COMPTEL, <i>BeppoSAX</i> PDS and ISGRI	1.6(^{+0.6} -0.3)
			ApJ 647 (2006) L41-L44	
	Models			
		Maximum	e.g. Tur et al.	1.0
			ApJ 718 (2010) 357-367	
		Typical	e.g. Tur et al.	0.2-0.4
_	ApJ 718 (2010) 357-367			

Observed ⁴⁴Ti yield consistently greater than predicted by model

44Ti (59y)

⁴⁴Ti production at PSI

IOPSCIENCE Journals + Login +

Journal of Physics G: Nuclear and Particle Physics

Journal of Physics G: Nuclear and Particle Physics > Volume 39 > Number 10 R Dressler et al 2012 J. Phys. G: Nucl. Part. Phys. 39 105201 doi:10.1088/0954-3899/39/10/105201

⁴⁴Ti, ²⁶Al and ⁵³Mn samples for nuclear astrophysics: the needs, the possibilities and the sources

FREE ARTICLE

R Dressler¹, M Ayranov¹, D Bemmerer², M Bunka¹, Y Dai¹, C Lederer³, J Fallis⁴, A StJ Murphy⁵, M Pignatari⁶, D Schumann¹, T Stora⁷, T Stowasser¹, F-K Thielemann⁶ and P J Woods⁵ Show affiliations

Journal of Physics G Nuclear and Particle Physics

lopscience.org/jphysg

Highlights

A compilation of the best papers published within the last year

Delivering the beam

ENSAR-2 NUSPRASEN WORKSHOP CERN 6 December 2016

Experiment design

2cm 60 Torr ⁴He gas cell

- ~6µm AI entrance window; 15 µm exit window
- MSL S2-type DSSD, inner diameter 18 mm, outer diameter 100 mm
- 48 circular strips, 16 azimuthal sectors
- 127 & 137 mm downstream: ΔE 65 μm; E 10000 μm

If typical, rate reduced by ~ factor of 2

THE ASTROPHYSICAL JOURNAL

WASHINGTON DC

PUSHING CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY. I. THE MODEL AND THE CASE OF SN 1987A

A. Perego¹, M. Hempel², C. Fröhlich³, K. Ebinger², M. Eichler², J. Casanova³, M. Liebendörfer², and F.-K. Thielemann²

Published 2015 June 23 • © 2015. The American Astronomical Society. All rights reserved. • The Astrophysical Journal, Volume 806, Number 2

Assuming reduced cross section is typical... The model is now very close to the observation!

Planned future nuclear astrophysics studies at HIE-ISOLDE

1

A Direct study of ⁴⁴Ti(α,p)⁴⁷V

- Core Collapse Supernovae are exciting
- There remains fundamental uncertainty in the explosion mechanism
- Gamma-rays from ⁴⁴Ti decay are one of the few ways in which data could improve models
- Major recent space investment is producing new highquality observational data
- The main nuclear uncertainty is the ⁴⁴Ti(α ,p)⁴⁷V reaction
- ⁴⁴Ti reclaimed from irradiated parts at PSI is now available
- Perform a direct measurement of ⁴⁴Ti(α,p)⁴⁷V

A Direct study of $^{44}Ti(\alpha,p)^{47}V$

- Core Collapse Supernovae are exciting
- There remains fundamental uncertainty in the explosion mechanism
- Gamma-rays from ⁴⁴T and are one of the few ways in which data could impression of the few ways in Major recent space investige of the few ways in the few ways
 - quality observational data
 - The main nuclear uncertainty is the 44 Ti(α ,p) 47 V reaction
 - ⁴⁴Ti reclaimed from irradiated parts at PSI is now available
 - Perform a direct measurement of ⁴⁴Ti(α,p)⁴⁷V

IS543: Spokesperson A. Murphy

Plan for a run 2

Essentially identical to run 1

- 100 MBq of ⁴⁴Ti is available & reserved at PSI
- Good reason to expect significantly more beam
- Aim for 3 4 measurements (not upper limits)
- An option for thinner cell windows, resulting in better resolution, is still being explored.

The vp process and ⁵⁹Cu(p, α)

- How are the 'p-nuclei' made?
- Photo-dissociation of heavy seeds fails to reproduce some nuclei (e.g. ^{92,94}Mo and ^{96,98}Ru)
- A vp-process: antineutrino absorptions in proton-rich environment \rightarrow neutrons to be captured by neutron-deficient nuclei.
- Speeds up the reaction flow, permitting element formation up to A~100.
- Arcones et al. have identified an end point nuclear cycle that could limit processing A>64.
- At high temperatures ${}^{59}Cu(p,\alpha){}^{56}Ni$ dominates over ⁵⁹Cu(p, γ), ending the process
- However, ⁵⁹Cu(p, α) is presently unmeasured...

The vp process and ⁵⁹Cu(p, α)

- How are the 'p-nuclei' made?
- Photo-dissociation of heavy seeds fails to reproduce some nuclei (e.g. ^{92,94}Mo and ^{96,98}Ru)
- A vp-process: antineutrino absorptions in proton-rich environment → neutrons to be captured by neutron-deficient nuclei.
- Speeds up the reaction flow, permitting element formation up to A~100.
- Arcones *et al.* have identified an end point nuclear cycle that could limit processing A>64.
- At high temperatures ⁵⁹Cu(p,α)⁵⁶Ni dominates over
 ⁵⁹Cu(p,γ), ending the process
- However, ⁵⁹Cu(p,α) is presently unmeasured...

The vp process and ⁵⁹Cu(p, α)

- How are the 'p-nuclei' made?
- Photo-dissociation of heavy seeds fails to reproduce some nuclei (e.g. ^{92,94}Mo and ^{96,98}Ru)
- A vp-process: antineutrino absorptions in proton-rich environment → neutrons to be captured by neutron-deficient nuclei.
- Speeds up the reaction flow, permitting element formation up to A~100.
- Arcones *et al.* have identified an end point nuclear cycle that could limit processing A>64.
- At high temperatures ⁵⁹Cu(p,α)⁵⁶Ni dominates over ⁵⁹Cu(p,γ), ending the process
- However, ⁵⁹Cu(p,α) is presently unmeasured...

THE ASTROPHYSICAL JOURNAL, 750:18 (9pp), 2012

The vp process and ⁵⁹Cu(p, α): IS607

- ⁵⁹Cu beam impinging CH₂ target
- Highly segmented silicon strip detectors, covering lab angles of 2.8 – 40 degrees
- Coincident detection of both ejectile and recoil
- 5 energy steps, E_{beam}: 3.8 5 MeV/u
- Anticipating high level density

Spokesperson: C. Lederer

A possible solution to the cosmological lithium problem: IS-554

- Big Bang Nucleosynthesis is well established
 But there is a problem: predicted abundance of
- E^{7} Jobes not match observation
- Could the solution be nuclear?

A possible solution to the cosmological lithium problem: IS-554

- Big Bang Nucleosynthesis is well established
 But there is a problem: predicted abundance of
- E ⁷Lidoes not match observation
- Could the solution be nuclear?
- Additional early universe destruction of ⁷Be could work (and not affect the existing agreements for H, D, He)
- Resonant enhancement of ⁷Be(d,p)⁸Be*(2α)
- Excitation energies in ⁸Be up to 20 MeV
- 35 MeV ⁷Be beam; double sided silicon strip detectors, laboratory angles 8-150°, detecting protons and alpha particles in coincidence.

A possible solution to the cosmological lithium problem: IS-554

- Big Bang Nucleosynthesis is well established
 But there is a problem: predicted abundance of
- E ⁷Lidoes not match observation
- Could the solution be nuclear?
- Additional early universe destruction of ⁷Be could work (and not affect the existing agreements for H, D, He)
- Resonant enhancement of ⁷Be(d,p)⁸Be*(2α)
- Excitation energies in ⁸Be up to 20 MeV
- 35 MeV ⁷Be beam; double sided silicon strip detectors, laboratory angles 8-150°, detecting protons and alpha particles in coincidence.

Summary

- The capabilities of REX-ISOLDE are well matched to the needs of nuclear astrophysics
 - Note the (disproportionate) number of talks here on nuclear astrophysics!
- The work is quite diverse
 - Experimental and theoretical nuclear physics, several different techniques,
 - Astrophysics & astronomy
 - Modeling & computational physics
 - Nuclear chemistry
 - -

REX-ISOLDE work fits well within the wider