Nuclear structure studies by the measurement of nuclear spins, moments and charge radii via collinear laser spectroscopy: results and perspectives

Gerda Neyens
KU Leuven, Belgium
with thanks to the COLLAPS and CRIS collaborations at ISOLDE-CERN

Collinear laser spectroscopy at ISOLDE-CERN

COLLAPS

- low background with bunched beams (few/s)
- need few 1.000's ions/s from ISOLDE
- 'simple'

CRIS (since 2012)

- ultra-low background (1 event /10 min)
- need few 10's ions/s from ISOLDE
- 'more demanding'

Collinear = high resolution: $20-60 \mathrm{MHz}$
\rightarrow can resolve all hyperfine peaks to extract I, $\mu, \mathrm{Q}, \delta<r^{2}>$

KULEUVEN

Even with high resolution

\rightarrow not always suitable transition from ground state (atom or ion)

\rightarrow Peaks not enough resolved to get
Q with good precision (5-10 \%)
\rightarrow SOLUTION: optical pumping to metastable state in ISCOOL

Collinear RIS versus in-source / in-gas-cell / in-jet

In-source and in-gas-cell: resolution $\sim 5-10 \mathrm{GHz}$ / only heavy elements (large HFS), only $\mu,\left\langle r^{2}\right\rangle$ M.D. Seliverstov et al. PLB 719 (2013) 362 (RILIS@ISOLDE)

Collinear: resolution ~ 50 MHz and $<20 /$ s
R.P. de Groote et al. PRL115 132501 (2015) (CRIS@ISOLDE)

In-jet: 300-400 MHz (ongoing)
Yu. Kudryavtsev et al. / NIMB 297 (2013) 7 (LEUVEN)

Shape changes in Fr isotopes:

KULEUVEN

Red: published results from laser spectroscopy up to 2015 Green: measured but not published till 2015

Limitation: production process

* refractory elements not @ ISOLDE
* lifetime (< 5 ms is rare)
* yield (~ 10 ions/s for collinear;

Limitation: resolution

* for heavy (Z>50): in-gas-jet OK to get I, $\mu, \mathrm{Q}, \mathrm{r}$
* intermediate mass: collinear spectroscopy needed to get

I and Q (as well as μ and r)

* for light elements (VERY small HFS and field shift):
dedicated methods needed to get I, Q and r!

Collinear laser spectroscopy at ISOLDE

measure fundamental properties of exotic nuclei in order to investigate changes in nuclear structure far from stability

Main focus: transition regions between/towards closed shells

Some selected physics results around $Z=20,28$

- Magic numbers and shell evolution?
- How magic is ${ }^{78} \mathrm{Ni}$?
- Shape coexistence along $\mathrm{N}=50$?
- Is there a shell gap at $\mathrm{N}=40$?
- How magic is $\mathrm{N}=32$?
- Onset of collectivity between $\mathrm{Z}=20$ and $\mathrm{Z}=28$?

For a review on the past 15 years:
See our contribution to the ISOLDE Laboratory report
R. Neugart, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, G. Neyens, W. Nörtershäuser, D. T. Yordanov
Collinear laser spectroscopy at ISOLDE: New methods and highlights.

Some Physics Results

- Magic numbers and shell evolution ?
- How magic is ${ }^{78} \mathrm{Ni}$?
- Shape coexistence along $\mathrm{N}=50$?
- Is there a shell gap at $\mathrm{N}=40$?
- How magic is $\mathrm{N}=32$?
- Onset of collectivity between $\mathrm{Z}=20$ and $\mathrm{Z}=28$?

For a review on the past 15 years:
See our contribution to the ISOLDE Laboratory report
R. Neugart, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, G. Neyens, W. Nörtershäuser, D. T. Yordanov

Collinear laser spectroscopy at ISOLDE: New methods and highlights.

Evolution of single particle orbits: measure ground state spins !

T. Otsuka et al, PRL 95, 232502 (2005)
T. Otsuka et al, PRL 104, 012501 (2010)

Cu-isotopes (Z=29): sensitive to the evolution of proton orbits

$$
\begin{gathered}
1214 \\
\hline 1096 \\
1 / 2^{-}
\end{gathered}
$$

Importance of modelindependent spin measurement (here: bunched-beam collinear laser spectroscopy)
K.T. Flanagan et al, PRL 103, 142501, 2009

Extend to ${ }^{77} \mathrm{Cu}$ using high-resolution CRIS

Injection seeded pulsed Ti:Sa laser for 249 nm (Tripled)

$S_{1 / 2}$

Frequency detuning (GHz)

Magnetic and Quadrupole moments: probe different correlations (M1/E2)

Magnetic moments from $\mathrm{N}=28$ to $\mathrm{N}=48$

Sieja et al., PRC81, 061303(R) (2010): include $\pi f_{7 / 2}$ in model space
Need 4p-4h proton excitations across Z=28 to reproduce magnetic moments ${ }^{71-77} \mathrm{Cu}$

Magnetic and Quadrupole moments: probe different correlations (M1/E2)

Quadrupole moments from $\mathrm{N}=28$ to $\mathrm{N}=48$

$$
\begin{gathered}
g_{9 / 2} \\
p_{1 / 2} \\
\mathrm{f}_{5 / 2} \\
\mathrm{p}_{3 / 2}=\mathbf{Z = 5 0} \\
\hline
\end{gathered}
$$

jj44b and JUN45 model space
\rightarrow Good reproduction of n-rich Q-moments
\rightarrow Miss correlations towards $\mathrm{N}=50$?

Calculated Q-moments for ${ }^{71-77} \mathrm{Cu}$ in extended model spaces...
\rightarrow Only proton excitations sufficient?
\rightarrow Weakening of $\mathrm{N}=50$ shell gap ? \rightarrow test magicity of ${ }^{78} \mathrm{Ni}$
\rightarrow Calculations in progress... / more statistic needed!

Some Physics Results

- Magic numbers and shell evolution?
- How magic is ${ }^{78} \mathrm{Ni}$?
- Shape coexistence along $\mathrm{N}=50$?
- Is there a shell gap at $\mathrm{N}=40$?
- How magic is $\mathrm{N}=32$?
- Onset of collectivity between $\mathrm{Z}=20$ and $\mathrm{Z}=28$?

For a review on the past 15 years:

See our contribution to the ISOLDE Laboratory report
R. Neugart, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, G. Neyens, W. Nörtershäuser, D. T. Yordanov

Collinear laser spectroscopy at ISOLDE: New methods and highlights.

Shape coexistence in the chart of nuclei:

- States with different shapes at low energy
- Near one magic shell and one mid-shell for p and n (or vice-versa)

Intruder states along $\mathbf{N}=49$

Intruder states confirmed for $\mathrm{N}=49$ isotones for more than 3 decades
K. Heyde et al., Physics Reports 102, 291 (1983)

Experimental evidence for shape coexistence is still missing!!
In ${ }^{79} \mathrm{Zn}$ and ${ }^{81} \mathrm{Ge}$: long-lived $1 / 2+$ (intruder) isomers \rightarrow laser spectroscopy!

HFS spectra of $79 \mathrm{~g}, \mathrm{~m} \mathrm{Zn} \quad l=9 / 2^{+}, 1 / 2^{+}$

X.F. Yang et al., PRL 116, 182502 (2016)

g-factor of 9/2 g.s. and $1 / 2$ isomeric state in ${ }^{79} \mathbf{Z n}$

g-factor of $9 / 2$ g.s. and $1 / 2$ isomeric state in ${ }^{79} \mathrm{Zn}$

g-factor of $9 / 2$ g.s. and $1 / 2$ isomeric state in ${ }^{79} \mathbf{Z n}$

C. Wright, X.F. Yang et al., in preparation

Established intruder nature of $1 / 2$ isomeric state in 79 Zn

F. Nowacki et al., sdg-pf space

KU LEUVEN
C. Wright, X.F. Yang et al., in preparation

$799, \mathrm{~m} Z n$ radii \rightarrow isomer shift = signature for shape coexistence

\rightarrow Confirm by performing COULEX on the isomeric beam to measure its deformation!

Some Physics Results

- Magic numbers and shell evolution?
- How magic is ${ }^{78} \mathrm{Ni}$?
- Shape coexistence along $\mathrm{N}=50$?
- Is there a shell gap at $\mathrm{N}=40$?
- How magic is $\mathrm{N}=32$?
- Onset of collectivity between $\mathrm{Z}=20$ and $\mathrm{Z}=28$?

For a review on the past 15 years:
See our contribution to the ISOLDE Laboratory report
R. Neugart, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, G. Neyens, W. Nörtershäuser, D. T. Yordanov

Collinear laser spectroscopy at ISOLDE: New methods and highlights.

Charge radii: sensitive to shell gaps

Charge radii of Cu isotopes: very weak subshell effect at $\mathrm{N}=40$

M.L. Bissell et al., PRC 93, 064318 (2016)

Some Physics Results

- Magic numbers and shell evolution?
- How magic is ${ }^{78} \mathrm{Ni}$?
- Shape coexistence along $\mathrm{N}=50$?
- Is there a shell gap at $\mathrm{N}=40$?
- How magic is $\mathrm{N}=32$?
- Onset of collectivity between $\mathrm{Z}=20$ and $\mathrm{Z}=28$?

For a review on the past 15 years:

See our contribution to the ISOLDE Laboratory report
R. Neugart, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, G. Neyens, W. Nörtershäuser, D. T. Yordanov

Collinear laser spectroscopy at ISOLDE: New methods and highlights.

Charge radii and moments of Ca and $\mathrm{K}: \mathrm{N}=32$ shell gap ?

$\mathrm{Ca}(\mathrm{Z}=20)$ closed proton shell

$$
K(Z=19)
$$

K. Kreim et al., PLB 731 (2014) 97

- No signature for a shell gap at $\mathrm{N}=32$ (radii of ${ }^{52} \mathrm{Ca}$ and ${ }^{51} \mathrm{~K}$ are increasing)
- From nuclear moments of Ca isotopes: excitations across $\mathrm{N}=32$ needed to reproduce magnetic moment of ${ }^{51} \mathrm{Ca}$ (R. Garcia-Ruiz et al., 91, 041304(R) (2015))

Some Physics Results

- Magic numbers and shell evolution?
- How magic is ${ }^{78} \mathrm{Ni}$?
- Shape coexistence along $N=50$?
- Is there a shell gap at $\mathrm{N}=40$?
- How magic is $\mathrm{N}=32$?
- Onset of collectivity between $\mathrm{Z}=20$ and $\mathrm{Z}=28$?

For a review on the past 15 years:

See our contribution to the ISOLDE Laboratory report
R. Neugart, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, K. T. Flanagan, G. Neyens, W. Nörtershäuser, D. T. Yordanov

Collinear laser spectroscopy at ISOLDE: New methods and highlights.

Quadrupole moments: sensitive to correlations and deformation

All isotopes have $\mathrm{I}=5 / 2$
except ${ }^{53 \mathrm{Mn}}$ (at $\mathrm{N}=28$) has normal $\mathrm{I}=7 / 2$

Quadrupole moments: sensitive to correlations and deformation

Mn isotopes ($\mathrm{Z}=25$)

$$
\begin{array}{ll}
\text { GXPF1A } & \text { LNPS } \\
\text { Honma, PRC65 (2002); } & \text { Lenzi, PRC82 (2010) } \\
\text { 40Ca core } & \text { 48Ca core } \\
\pi \text { fp-shell } & \begin{array}{l}
\pi \text { fp-shell } \\
v \text { fp-shell }
\end{array} \\
& \begin{aligned}
v & \text { upper fp } \\
& +g_{9 / 2} d_{5 / 2}
\end{aligned}
\end{array}
$$

\rightarrow neutron excitations are needed from $\mathrm{N}=36$ onwards, into $v g_{9 / 2}$ and $v d_{5 / 2}$!

Radii of Mn isotopes

Onset of deformation from $\mathrm{N}=36$ onwards

Moments: probing the wave function

Mn isotopes ($\mathrm{Z}=25$)
LNPS reproduces the moments \rightarrow correct wave function

Excitations across $\mathrm{N}=40$ induce increase in proton excitations across Z=28 (type-II shell evolution
Tsunoda et al., PRC89, 2014)

Future cases

Main focus:

- transition regions between/towards closed shells
- towards exotic doubly-magic nuclei
- neutron-deficient proton emitters

CONCLUSIONS

Nuclear spins, moments and radii are complementary probes to study nuclear structure far from stability

Complementary laser spectroscopy methods are needed:

- related to production method
- related to sensitivity/efficiency
- related to resolution
- related to 'easiness'
(each method has its pro's and contra's)
Other probes are needed to complement the physics interpretation: each observable probes different aspects of the nuclear structure
- coulex and transfer reactions
- masses
- decay spectroscopy
- lifetime measurements
- moments of exited states

KULEUVEN

R. Neugart et al., ISOLDE Laboratory Report, Nov. 2016

Table 1. An overview of measurements made at COLLAPS and CRIS at ISOLDE in the $Z=20$ to $Z=50$ region using the ISCOOL buncher @ HRS (since 2008)

Z	Isotopes	Measured	References
$\mathrm{K}, 19$	$38,38 \mathrm{~m}, 39,42,44,46-51$	$I, \mu, \delta\left\langle r^{2}\right\rangle$	$[51,52,53,54]$
$\mathrm{Ca}, 20$	$40,43-52$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	$[48,55,56]$
$\mathrm{Mn}, 25$	$51,53-64$	$I, \mu, \delta\left\langle r^{2}\right\rangle$	$[57,58,59,60]$
	$53,55,57,59,61,63$	Q_{s}	$[61]$
$\mathrm{Ni}, 28$	$58-68,70$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	Under analysis.
$\mathrm{Cu}, 29$	$58-75,68 \mathrm{~m}, 70 \mathrm{~m} 1,70 \mathrm{~m} 2$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	$[47,49,62,63,64]$
	$63-66,68-78,68 \mathrm{~m}, 70 \mathrm{~m} 1,70 \mathrm{~m} 2$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	CRIS, under analysis.
$\mathrm{Zn}, 30$	$62-80,69 \mathrm{~m}-79 \mathrm{~m}$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	$[65]$ and under analysis.
$\mathrm{Ga}, 31$	$63,64,66-81$	I, μ, Q_{s}	$[50,66,67]$
	$63,64,66,68-82$	$\delta\left\langle r^{2}\right\rangle$	$[68,69]$
	$65,67,69,71,75,79-82,80 \mathrm{~m}$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	CRIS, under analysis.
$\mathrm{Cd}, 48$	$100-129,111 \mathrm{~m}-129 \mathrm{~m}$	$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	$[70,71,72]$ and
		$I, \mu, Q_{\mathrm{s}}, \delta\left\langle r^{2}\right\rangle$	Under analysis.
$\mathrm{Sn}, 50$	$109,112-134$		

Use of 'bunched' beams from RFQ (ISCOOL) is crucial

at COLLAPS (CW lasers)
at CRIS (pulsed lasers)
\checkmark efficiency (duty-cycle) enhanced by factor 1000 by time-overlap between the ion bunch and the laser pulses

CRIS with CW atom beam:

(Schulz et al., J. Phys. B 24, 1991)

$$
\text { efficiency = } 0.001 \text { \% }
$$

CRIS with bunched atom beam:
(Flanagan et al., Phys. Rev. Lett. 111, 212501 (2013) efficiency $=1 \%$
(De Groote et al. Phys. Rev. Lett. 115, 132501 (2015)) resolution $=20 \mathrm{MHz}$!

