Shape effects from TAS measurements

Alejandro Algora
IFIC (CSIC-Univ. Valencia), Spain
MTA ATOMKI, Debrecen, Hungary

Experimentally how we determine shapes...

-Nuclear electric quadrupole measurements (not valid for $\mathrm{J}=0,1 / 2 \mathrm{gs}$)
-Nuclear radii measurements, by means of particle scattering experiments -Nuclear radii determinations by means of isotopic shifts (laser spectroscopy, muonic atoms)

- Nuclear spectroscopic information: level life time measurements, B(E2), transitions in a band, $\mathrm{E}(0)$, etc.
-Coulomb excitation

P. Twin et. al

Phys. Rev. Lett. 57 (1986)
$|Q|=\sqrt{16 \pi B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}=\frac{3 Z e}{\sqrt{5 \pi}} R_{0}^{2}\left(\beta+0.16 \beta^{2}\right)$,

Laser spectroscopy of cooled Zr fission products (Campbell PRL 89, 2002) Mean square charge radii deduced from the measurements compared with droplet model predictions.

What can beta decay offer apart from spectroscopy

Another alternative, based in the pioneering work of I. Hamamoto, (Z. Phys. A353 (1995) 145) later followed by studies of P. Sarriguren et al., Petrovici et al. is related to the dependency of the strength distribution in the daugther nucleus depending on the shape of the parent. It can be used when theoretical calculations predict different $\mathrm{B}(\mathrm{GT})$ distributions for the possible shapes of the ground state (prolate, spherical, oblate).
P. Sarriguren et al., Nuc. Phys. A635 (1999) 13

Example: ${ }^{60} \mathrm{Co}$ decay from http://www.nndc.bnl.gov/

Example: ${ }^{60} \mathrm{Co}$ decay from http://www.nndc.bnl.gov/

Example: ${ }^{60} \mathrm{Co}$ decay from http://www.nndc.bnl.gov/

Example: ${ }^{60} \mathrm{Co}$ decay from http://www.nndc.bnl.gov/
feeding: $=l_{\beta}=P_{f}^{*} 100$
Comparative half-life: ft
A way introduced by Fermi to compare the different decays (Q, Z')

$$
f\left(Z^{\prime}, Q\right)=\text { const } \cdot \int_{0}^{p_{\max }} F\left(Z^{\prime}, p\right) p^{2}\left(Q-E_{e}\right)^{2} d p, \quad t_{f}=\frac{T_{1 / 2}}{P_{f}}
$$

$$
f t_{f}=\text { const }^{\prime} \frac{1}{\left|M_{i f}\right|^{2}}=\text { const }^{\prime} \frac{1}{B_{i \rightarrow f}}
$$

$$
\left.\left.B_{i \rightarrow f}=\frac{1}{2 J_{i}+1} \right\rvert\,\left\langle\Psi_{f}\right| \tau^{ \pm} \text {or } \sigma \tau^{ \pm}\left|\Psi_{i}\right\rangle\right\rangle^{2}
$$

The problem of measuring the β-feeding

- Ge detectors are conventionally used to construct the level scheme populated in the decay
-From the γ intensity balance we deduce the β-feeding

Experimental perspective: the problem of measuring the β-feeding

$$
{ }_{\mathrm{Z}+1} \mathrm{~A}_{\mathrm{N}-1}
$$

- What happens if we miss some intensity

$$
\begin{aligned}
& \text { Single } \gamma \sim \varepsilon \\
& \text { Coinc } \gamma_{1} \gamma_{2} \sim \varepsilon_{1} \varepsilon_{2}
\end{aligned}
$$

TAGS measurements

gamma rays \rightarrow feeding \rightarrow Strength

The only reasonable way to solve the problem, without suffering from the so-called Pandemonium effect is to use a highly efficient device:

A TOTAL ABSORTION SPECTROMETER

But there is a change in philosophy. Instead of detecting the individual gamma rays we sum the energy deposited by the gamma cascades in the detector.

A TAS is like a calorimeter!
Big crystal, 4T

Ge detector case: ${ }^{24} \mathrm{Na}$ decay

Stopped Beam Configuration:

15 clusters, 105 Ge capsules

$$
\begin{aligned}
& \varepsilon_{p 1}=0.10 \quad \mathrm{Y}_{1}=1369 \mathrm{keV} \\
& \varepsilon_{p 2}=0.06 \quad \mathrm{Y}_{2}=2754 \mathrm{keV} \\
& \varepsilon_{c o i n c}=\mathcal{E}_{p 1} \cdot \varepsilon_{p 2} \\
& \varepsilon_{c o i n c}=0.006
\end{aligned}
$$

TAS case: ${ }^{24} \mathrm{Na}$ decay

$$
d=R(B) \cdot f
$$

Lucrecia: the TAS at ISOLDE (CERN) (Madrid-Strasbourg-Surrey-Valencia)

- A large Nal cylindrical crystal $38 \mathrm{~cm} \varnothing, 38 \mathrm{~cm}$ length
- An X-ray detector (Ge)
- A β detector
- Possibility of collection point inside the crystal

Lucrecia: the TAS at ISOLDE (CERN) (Madrid-Strasbourg-Surrey-Valencia)

Analysis can be done (p-rich side)
singles (beta and EC component together), or in coincidences with betas (beta component) orr in coincidences with X-rays (EC component)

Plastic detector

$$
\begin{array}{ll}
{ }_{z} A_{N} \rightarrow{ }_{Z+1} A_{N-1}+e^{-}+\bar{v} & \beta^{-} \\
{ }_{z} A_{N} \rightarrow{ }_{Z-1} A_{N+1}+e^{+}+v & \beta^{+} \\
{ }_{Z} A_{N}+e^{-} \rightarrow_{Z-1} A_{N+1}+v+X_{r a y} & \text { EC }
\end{array}
$$

Some earlier examples (proposals of Rubio and Dessagne)

E. Nácher et al. PRL 92 (2004) 232501 and PhD thesis Valencia
Ground state of ${ }^{76} \mathrm{Sr}$ prolate ($\beta_{2} \sim 0.4$) as indicated in Lister et al., PRC 42 (1990) R1191

Mixture of prolate and oblate

E. Poirier et al., Phys. Rev. C 69, 034307 (2004) and PhD thesis Strasbourg

Ground state of ${ }^{74} \mathrm{Kr}:(60 \pm 8) \%$ oblate, in agreement with other exp results and with theoretical calculations (A. Petrovici et al.)

${ }^{78}$ Sr case

PHYSICAL REVIEW C 88, 014324 (2013)

Deformation of Sr and Rb isotopes close to the $N=Z$ line via β-decay studies using the total absorption technique
A. B. Pérez-Cerdán, ${ }^{1}$ B. Rubio, ${ }^{1,{ }^{*}}$ W. Gelletly, ${ }^{2}$ A. Algora,,${ }^{1,3}$ J. Agramunt, ${ }^{1}$ E. Nácher,,${ }^{1,4}$ J. L. Taín, ${ }^{1}$ P. Sarriguren, ${ }^{4}$ L. M. Fraile, ${ }^{5}$ M. J. G. Borge, ${ }^{4}$ L. Caballero, ${ }^{1}$ Ph. Dessagne, ${ }^{6}$ A. Jungclaus, ${ }^{4}$ G. Heitz, ${ }^{6}$ F. Marechal, ${ }^{6}$ E. Poirier, ${ }^{6}$ M. D. Salsac, ${ }^{6}$ and O. Tengblad ${ }^{4}$

${ }^{78}$ Sr case

PHYSICAL REVIEW C 88, 014324 (2013)

Deformation of $\mathbf{S r}$ and $\mathbf{R b}$ isotopes close to the $N=Z$ line via β-decay studies

 using the total absorption techniqueA. B. Pérez-Cerdán, ${ }^{1}$ B. Rubio, ${ }^{1,{ }^{*}}$ W. Gelletly, ${ }^{2}$ A. Algora, ${ }^{1,3}$ J. Agramunt, ${ }^{1}$ E. Nácher,,${ }^{1,4}$ J. L. Taín, ${ }^{1}$ P. Sarriguren, ${ }^{4}$ L. M. Fraile, ${ }^{5}$ M. J. G. Borge, ${ }^{4}$ L. Caballero, ${ }^{1}$ Ph. Dessagne, ${ }^{6}$ A. Jungclaus, ${ }^{4}$ G. Heitz, ${ }^{6}$ F. Marechal, ${ }^{6}$ E. Poirier, ${ }^{6}$ M. D. Salsac, ${ }^{6}$ and O. Tengblad ${ }^{4}$

${ }^{72} \mathrm{Kr}$ case

PHYSICAL REVIEW C 92, 054326 (2015)

Shape study of the $N=Z$ nucleus ${ }^{72} \mathbf{K r}$ via $\boldsymbol{\beta}$ decay

J. A. Briz, ${ }^{1,{ }^{*}}$ E. Nácher, ${ }^{1,2}$ M. J. G. Borge, ${ }^{1,3}$ A. Algora, ${ }^{2,4}$ B. Rubio, ${ }^{2}$ Ph. Dessagne, ${ }^{5,6}$ A. Maira, ${ }^{1}$ D. Cano-Ott, ${ }^{2,7}$ S. Courtin, ${ }^{5,6}$ D. Escrig, ${ }^{1}$ L. M. Fraile, ${ }^{8}$ W. Gelletly, ${ }^{9}$ A. Jungclaus, ${ }^{1}$ G. Le Scornet, ${ }^{3}$ F. Maréchal, ${ }^{5,6}$ Ch. Miehé, ${ }^{5,6}$ E. Poirier, ${ }^{5,6}$ A. Poves, ${ }^{10}$ P. Sarriguren, ${ }^{1}$ J. L. Taín, ${ }^{2}$ and O. Tengblad ${ }^{1}$

72Kr case

Shape study of the $N=Z$ nucleus ${ }^{72} \mathbf{K r}$ via $\boldsymbol{\beta}$ decay

```
J. A. Briz, \({ }^{1,{ }^{*}}\) E. Nácher, \({ }^{1,2}\) M. J. G. Borge, \({ }^{1,3}\) A. Algora, \({ }^{2,4}\) B. Rubio, \({ }^{2}\) Ph. Dessagne,,\({ }^{5,6}\) A. Maira, \({ }^{1}\) D. Cano-Ott, \({ }^{2,7}\) S. Courtin, \({ }^{5,6}\) D. Escrig, \({ }^{1}\) L. M. Fraile, \({ }^{8}\) W. Gelletly, \({ }^{9}\) A. Jungclaus, \({ }^{1}\) G. Le Scornet, \({ }^{3}\) F. Maréchal, \({ }^{5,6}\) Ch. Miehé, \({ }^{5,6}\) E. Poirier, \({ }^{5,6}\)
A. Poves, \({ }^{10}\) P. Sarriguren, \({ }^{1}\) J. L. Taín, \({ }^{2}\) and O. Tengblad \({ }^{1}\)
```


FIG. 9. (Color online) Comparison of the accumulated $B(\mathrm{GT})$ distribution with results from the high-resolution spectroscopy study of Piqueras et al. [31]. Evidence of the Pandemonium effect can be seen.

The answer is not always clear

PHYSICAL REVIEW C 92, 054326 (2015)

Shape study of the $N=Z$ nucleus ${ }^{72} \mathrm{Kr}$ via β decay

J. A. Briz, ${ }^{1,{ }^{*}}$ E. Nácher, ${ }^{1,2}$ M. J. G. Borge, ${ }^{1,3}$ A. Algora, ${ }^{2,4}$ B. Rubio, ${ }^{2}$ Ph. Dessagne, ${ }^{5,6}$ A. Maira, ${ }^{1}$ D. Cano-Ott, ${ }^{2,7}$ S. Courtin, ${ }^{5,6}$ D. Escrig, ${ }^{1}$ L. M. Fraile, ${ }^{8}$ W. Gelletly, ${ }^{9}$ A. Jungclaus, ${ }^{1}$ G. Le Scornet, ${ }^{3}$ F. Maréchal, ${ }^{5,6}$ Ch. Miehé, ${ }^{5,6}$ E. Poirier, ${ }^{5,6}$ A. Poves, ${ }^{10}$ P. Sarriguren, ${ }^{1}$ J. L. Taín, ${ }^{2}$ and O. Tengblad ${ }^{1}$

QRPA calculations (Sarriguren)

SM calculations (Poves)

The SM (Poves) and complex Excited VAMPIR calculations (Petrovici) imply a ground state with mixed configuration (oblate-prolate mixing)

SM predicts more gs feeding

Can an answer still be given?

J. A. BRIZ et al.

TABLE II. Accumulated $B(\mathrm{GT})$ values (in units of $g_{A}^{2} / 4 \pi$) for the ${ }^{72} \mathrm{Kr}$ decay obtained in this work in comparison with theoretical predictions.

Energy (keV)	Expt. TAS	QRPA [40]		EXVAM [19]		Shell model
		Obl.	Pro.	Bonn-A	Bonn-CD	
120	0.0(0)	0.019	0	0.03	0.06	0.13
1000	0.32(2)	0.22	0.36	0.12	0.17	0.24
2000	0.76(2)	0.51	1.10	0.55	0.51	0.64
2680	0.79(4)	0.98	1.40	0.63	0.59	0.87
5000		1.58	1.64	0.82	0.70	1.23

Other experiments were consistent with an oblate shape
A. Gade et al., PRL 96 (2006) 189901; E. Bouchez et al., PRL 90 (2003)082502; H. Iwasaki et al. PRL112 (2014) 142502

Can an answer still be given?

J. A. BRIZ et al.

TABLE II. Accumulated $B(\mathrm{GT})$ values (in units of $g_{A}^{2} / 4 \pi$) for the ${ }^{72} \mathrm{Kr}$ decay obtained in this work in comparison with theoretical predictions.

$\begin{aligned} & \text { Energy } \\ & \text { (keV) } \end{aligned}$	Expt. TAS	QRPA [40]		EXVAM [19]		Shell model
		Obl.	Pro.	Bonn-A	Bonn-CD	
120	0.0(0)	0.019	0	0.03	0.06	0.13
1000	0.32(2)	0.22	0.36	0.12	0.17	0.24
2000	0.76(2)	0.51	1.10	0.55	0.51	0.64
2680	0.79(4)	0.98	1.40	0.63	0.59	0.87
5000		1.58	1.64	0.82	0.70	1.23

Other experiments were consistent with an oblate shape
A. Gade et al., PRL 96 (2006) 189901; E. Bouchez et al., PRL 90 (2003)082502; H. Iwasaki et al. PRL112 (2014) 142502

Possible questions

- is the method only valid for A~80?
- was the good agreement accidental ?
- because the method can be useful for exotic nuclei
- So it is worth explore heavier domains ...

Intruder 0+ states in ${ }^{186} \mathrm{~Pb}$

The B(GT) profiles

---- spherical

- oblate

Moreno, Sarriguren PRC 73 (2006) 054317

IS440 results: ${ }^{192 \mathrm{~Pb}}$-> ${ }^{992} \mathrm{TI}$ example (proposal by Algora, Rubio, Gelletly)

β^{+}
EC

Thesis work of M. E. Estevez 2011, and M. E. Estevez et al. PRC 92, 044321 (2015).

IS440 results: ${ }^{192} \mathrm{~Pb}$ example

Thesis work of M. E. Estevez 2011, and M. E. Estevez et al. PRC 92, 044321 (2015).
Theory from PRC 73 (2006) 054317)
Results consistent with spherical picture, but less impressive than in the $A \approx 80$ region.
Experiment has more "spreading" than theory. Similar situation for ${ }^{190} \mathrm{~Pb}$. Possible explanation, the spherical character of the Pb nuclei, but requires further testing.

IS440 results: ${ }^{190} \mathrm{~Pb}$

Thesis work of M. E. Estevez 2011, and M. E. Estevez et al. PRC 92, 044321 (2015).
Theory from PRC 73 (2006) 054317)
Results consistent with spherical picture, but less impressive than in the A ≈ 80 region. Possible explanation, the spherical character of the Pb nuclei, but requires further testing.

On-going and future studies in the region

(even Hg experiment already performed)

Prop by: Algora, Fraile, Nácher

H. De Witte et al. PRL 98, 0112502

Also T. Cocolios et al. PRL 106, 052503

On-line spectra from mass 186, the alchemist dream $\left({ }^{186} \mathrm{Hg}->{ }^{186} \mathrm{Au}\right)$)

PLAN_Cal
TAS_Cal

On-line spectra TAS spectrum from mass 186 (EC component, two list mode files)

TAS_Cal

M. G. Porquet et al. / Shape coexistence

Is the TAS answer meaningful?

Decaying ISOTOPE	TAS Def. (Sarriguren)	Moller Def.	ETFSI Def.
72 Kr	$\begin{aligned} & -0.3 \\ & (+10 \%+0.4 \text { ?) } \\ & \text { or mixed config } \end{aligned}$	-0.35	-0.40
74Kr	Mixed config	+0.40	-0.30
76 Sr	$\sim+0.4$	+0.42	+0.44
78 Sr	$\sim+0.4$	+0.42	+0.43
190 Pb	~ 0.0	0.00	-0.02
192Pb	~ 0.0	0.00	-0.02

Is the TAS answer meaningful?

Decaying ISOTOPE	TAS Def. (Sarriguren)	Moller Def.	ETFSI Def.
72 Kr	$\begin{aligned} & -0.3 \\ & (+10 \%+0.4 \text { ? }) \\ & \text { or mixed config } \end{aligned}$	-0.35	-0.40
74 Kr	Mixed config	+0.40	-0.30
76 Sr	$\sim+0.4$	+0.42	+0.44
78 Sr	$\sim+0.4$	+0.42	+0.43
190 Pb	~ 0.0	0.00	-0.02
192 Pb	~ 0.0	0.00	-0.02

DTAS detector for DESPEC(FAIR)

$16+(2)$ modules:
$15 \times 15 \times 25 \mathrm{~cm}^{3} \mathrm{Nal}(\mathrm{TI})$

+ 5" PMT (50\% light col.)

$$
\mathrm{V}=95 \mathrm{~L}, \mathrm{M}=351 \mathrm{~kg}
$$

Minimum dead-material

DTAS

Designed for a fragmentation facility
TDR approved (01/2013)
Commissioning at IFIC (01/2014)
First experiments at JYFL (02-03/2014)

Fast ions active stopper: AIDA (Stack of DSSSD)

Exp vs MC for ${ }^{24} \mathrm{Na}$

DTAS at Jyväskylä (Feb. 2014)

 (collaboration with Subatech, spokespersons: Fallot, Tain, Algora)

Collateral effect of research for applications

 for decay heat in reactors, measured at IGISOL Jyväskylä V. Guadilla, thesis work, Valencia

Collateral effect of research for applications

Beta decay in the ("exotic") neutron rich side

Beta strength measurements: combination of techniques

Total Absorption γ Ray Spectrometer

4π Neutron Counter

Neutron Time of Flight Spectrometer

- TAGS provides data free of "Pandemonium" systematic error
- $4 \pi n$-Counter provides P_{n}
- n -ToF Array provides the E_{n} distribution

Beta strength measurements: combination of techniques

Total Absorption γ Ray Spectrometer

4π Neutron Counter

Neutron Time of Flight Spectrometer

- TAGS provides data free of "Pandemonium" systematic error
- $4 \pi n$-Counter provides P_{n}
- n -ToF Array provides the E_{n} distribution

Beta strength measurements: combination of techniques

Total Absorption γ Ray Spectrometer

4T Neutron Counter

Neutron Time of Flight Spectrometer
 Distribution of the beta-dec y feeding to the ${ }^{94}$ Sr state

What can $T_{1 / 2}$ and P_{n} measurements

provide?

$$
B_{i \rightarrow f} \sim \mid\left\langle\Psi_{f}\right| \tau^{ \pm} \text {or }\left.\sigma \tau^{ \pm}\left|\Psi_{i}\right\rangle\right|^{2}
$$

$$
\frac{1}{T_{1 / 2}}=\frac{\left(g_{A} / g_{V}\right)_{e f f}^{2}}{D} \sum_{0<E_{e x}<Q_{\beta}} f\left(Z, Q_{\beta}-E_{e x}\right) B\left(G T, E_{e x}\right)
$$

$$
P_{n}=\frac{\sum_{S_{n}<E_{e x}<Q_{\beta}} f\left(Z, Q_{\beta}-E_{e x}\right) B\left(G T, E_{e x}\right)}{\sum_{0<E_{e x}<Q_{\beta}} f\left(Z, Q_{\beta}-E_{e x}\right) B\left(G T, E_{e x}\right)}
$$

> Hartree-Fock calculations: A=100
> (Sarriguren, Pereira PRC $81(2010) 064314$ and Sarriguren, Algora, Pereira PRC $89(2014) 034311)$

- Hartree-Fock mean field calculations using an effective two-body Skyrme interaction and including pairing correlations in the BCS approximation. In this framework single part. energies, wave functions and occupation probabilities are generated from the mean field
- Force used: Skyrme SLy4, considered representative of Skyrme forces, and includes some selected properties of unstable nuclei in the adjusting procedure of the parameters
- Result: different $\mathrm{B}(\mathrm{GT})$ profiles depending on the shape of the parent nucleus. According to the calculations the deformation of the ground state of parent and daughter is practically the same.

A=100 region, equilibrium shapes

Sarriguren, Pereira PRC 81(2010) 064314

The B(GT) profiles

- oblate
-- prolate
... spherical exp

Sarriguren, Pereira PRC 81(2010) 064314

Sarriguren, Pereira
PRC 81(2010) 064314

What can $T_{1 / 2}$ and P_{n} measurements provide (SLy4)?

Mo isotopes (SLy4)

P_{n} and $T_{1 / 2}$ values (SLy4)

Isotope	Oblate shape	Spherical shape	Prolate shape	Experiment (Pereira)
$106 Z r$	1.05	0.032	1.81	≤ 7
108 Zr	6.44	0.29	10.94	
110 Zr	30.93	1.02	12.82	
110 Mo	0.21	0.005	0.036	$2.0(7)$
112 Mo	3.05	0.208	2.03	
114 Mo	21.54	0.4	13.66	

Isotope	Oblate shape	Spherical shape	Prolate shape	Experiment (Nishimura)
106 Zr	0.073	0.036	0.252	$0.186(11)$
108 Zr	0.039	0.014	0.056	$0.073(4)$
110 Zr	0.024	0.0078	0.034	$0.037(17)$
110Mo	0.424	0.086	0.393	
112Mo	0.174	0.031	0.204	$0.120(13)$
114Mo	0.044	0.023	0.064	$0.060(13)$

BRIKEN Project: Beta delayed neutron measurements at RIKEN

Largest ${ }^{3} \mathrm{He}$ array ever built ($182{ }^{3} \mathrm{He}$ tubes)

60 scientists from 24 institutions

Astrophysics, nuclear structure, reactor technology 3 Exp. Proposals approved 2014-2015
$\checkmark 23$ days of beam-time approved at RIKEN / BigRIPS!

HEL 808
UPC

BRIKEN Project: Beta delayed neutron approved proposals

Summary

-Even though there are other techniques to determine the shape of the ground state of the nucleus, I hope I have shown you that strength measurements using the TAS technique can be useful for particular cases.

- In the neutron rich side Pn and $\mathrm{T}_{1 / 2}$ measurements can provide an alternative source of information for exotic nuclei (depends heavily on theory and on the case)

THANK YOU

E. Estevez, J.L. Tain, B. Rubio, E.Nácher, J. Agramunt, A. B. Perez, L. Caballero, F. Molina, D. Jordan, A. Krasznahorkay, M. Hunyadi, Zs. Dombrádi, W. Gelletly, P. Sarriguren, 0 Moreno, M. J. G. Borge, 0. Tengblad, A. Jungclaus, L. M. Fraile, D. Fedosseev, B. A. Marsh, D. Fedorov, A. Frank, A. Algora

J.L. Tain, B. Rubio, E. Nácher, L. Caballero, J. Agramunt, A. B. Perez, D. Jordan, F. Molina, W. Gelletly, L. Batist, A. Garcia, J. Aystö, H. Pentilä, I. Moore, P. Karvonen, A. Jokinen, S. RintaAntila, A. Kankainen, T. Eronen, U. Hager, T. Sonoda, J. Hakala, A. Nieminen, A. Saastamoinen, J. Rissanen, T. Kessler, C. Weber, J. Ronkainen, S. Rahaman, V. Elomaa, T. Yoshida, F. Storrer, A. L. Nichols, G. Lhersonneau, K. Burkard, W. Huller, A. Krasznahorkay, A. Vitéz, J. Gulyás, M. Csatlos, M. D. Hunyadi, L. Csige, A. Sonzogni, K. Perajarvi, K. L. Kratz, A. Petrovici,, E. Valencia, S. Rice, M. Fallot, A. Porta, Z. A. Aziz, A. Algora

THANK YOU

Mean-field prediction for ground-state shapes

ground-state deformation (HFB calculation)

76 Sr beta decay

The nuclear shape concept evolution ...

- Rutherford model: point like shape (approx. 100 years ago)
- To interpret the binding energies the liquid drop model is created (spherical shapes), later it evolves into the droplet model with diffuse surface
- Revolution in the 50 's: collectivity and static deformed shapes are born. Shape becomes a concept and a tool for testing nuclear models. It is a necessity to interpret data on nuclear multipoles, Coulomb excitation data, etc.
- The interpretation of fission requires the assumption of elongated shapes, or a very drastic shape change.
- Strutinsky shell correction it combination with the liquid drop model predicts deformed minima
- Direct measurements by means of scattering experiments ...
- Nilsson model, and shell model relation (Elliot Model), mean field
- Shape coexistence
- SD bands, HD states, etc, etc, etc.
(more than 1144 publications in APS journals 1940-2010)

Shapes from nuclear spectroscopic information (mainly gamma spectroscopy)

Twin, Nyako, Sharpey-Shaffer et al.
Fig. taken from Sharpey-Shaffer Phys. World 1999

- From level lifetimes, B(E2)-s, deformation can be deduced
- From in-band multipole mixing ratios (angular distributions) the sign of the Q can be deduced
- E0 (electric monopole transitions) are associated with shape changes

$$
|Q|=\sqrt{16 \pi B\left(E 2: 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}=\frac{3 Z e}{\sqrt{5 \pi}} R_{0}^{2}\left(\beta+0.16 \beta^{2}\right),
$$

How do we deduce the nuclear shape of the ground state when it is a $0+$ state ...

- Nuclear radii determination (isotope shifts)
- Analysis of spectroscopic information (B(E2)-s, $\mathrm{T}_{1 / 2}$ and assuming that we have a band with the same deformation
-???

Pandemonium (The Capital of Hell) introduced by John Milton (XVII) in his epic poem Paradise Lost

John Martin (~ 1825) Hardy et al., Phys. Lett. 71B (1977) 307

Problems associated with TAS (TAZ ?)

- The analysis is difficult and lengthy since it requires a careful calculation of the response function of the detector to the decay (but nowadays we have the tools to attack the problem)
- Special care have to be taken with the contaminants

TAZ (hungry beast)

Analysis

$$
d_{i}=\sum_{j} R_{i j} f_{j} \quad \text { or } \quad \mathbf{d}=\mathbf{R} \cdot \mathbf{f}
$$

R is the response function of the spectrometer, $\boldsymbol{R}_{i j}$
 means the probability that feeding at a level \boldsymbol{j} gives counts in data channel \boldsymbol{i} of the spectrum
The response matrix \mathbf{R} can be constructed by recursive convolution:

$$
\mathbf{R}_{\mathbf{j}}=\sum_{k=0}^{j-1} b_{j k} \mathbf{g}_{\mathbf{j k}} \otimes \mathbf{R}_{\mathbf{k}}
$$

$\mathbf{g}_{\mathbf{j k}}$: γ-response for $j \rightarrow k$ transition
$\mathbf{R}_{\mathbf{k}}$: response for level k
$b_{j k}$: branching ratio for $j \rightarrow k$ transition

Mathematical formalization by Tain, Cano, et al.

The complexity of the TAGS analysis: an ill posed problem

$d=R(B) \cdot f$

Steps:

1. Define B (branching ratio matrix)
2. Calculate $R(B)$
3. Solve the equation $d=R(B) f$ using an appropriate algorithm

Expectation Maximization (EM) method: modify knowledge on causes from effects

$$
P\left(f_{j} \mid d_{i}\right)=\frac{P\left(d_{i} \mid f_{j}\right) P\left(f_{j}\right)}{\sum_{j} P\left(d_{i} \mid f_{j}\right) P\left(f_{j}\right)}
$$

Algorithm: $\quad f_{j}^{(s+1)}=\frac{1}{\sum_{i} R_{i j}} \sum_{i} \frac{R_{i j} f_{j}^{(s)} d_{i}}{\sum_{k} R_{i k} f_{k}^{(s)}}$

The complexity of the TAGS analysis: an ill posed problem

$d=R(B) \cdot f$

Steps:

1. Define B (branching ratio matrix)
2. Calculate $R(B)$
3. Solve the equation $d=R(B) f$ using an appropriate algorithm

Expectation Maximization (EM) method: modify knowledge on causes from effects

$$
P\left(f_{j} \mid d_{i}\right)=\frac{P\left(d_{i} \mid f_{j}\right) P\left(f_{j}\right)}{\sum_{j} P\left(d_{i} \mid f_{j}\right) P\left(f_{j}\right)}
$$

Algorithm: $\quad f_{j}^{(s+1)}=\frac{1}{\sum_{i} R_{i j}} \sum_{i} \frac{R_{i j} f_{i}^{(s)} d_{i}}{\sum_{k} R_{k j} f_{k}^{(s)}}$

Pandemonium and summation calculations

As a result of the Pandemonium, betas and neutrinos are estimated with higher energies from databases. Their spectra is harder.
This is why TAS measurements are very important

Total absorption spectroscopy

Solution: use of coincidences with ancillary detectors

The problem of measuring the β-feeding (no delayed part.emission)

$$
\begin{aligned}
& \text { Real } \\
& \text { situation } \\
& F_{2}=I_{\gamma_{2}} \\
& F_{1}=0 \\
& \left(I_{\gamma_{2}}=I_{\gamma_{1}}\right)
\end{aligned}
$$

$$
{ }_{\mathrm{Z}+1} \mathrm{~A}_{\mathrm{N}-1}
$$

$$
{ }_{\mathrm{Z}+1} \mathrm{~A}_{\mathrm{N}-1}
$$

-We use Ge detectors to construct the level scheme populated in the decay
-From the g intensity balance we deduce the b -feeding
-What happens if we miss some gamma intensity???

Beta decay in the neutron rich side

If $S_{n}<Q_{\beta}$
and the decay proceeds to states above S_{n}, neutron emission competes and can dominate over γ-ray de-excitation
The process will dominate far from stability on the n-rich side.
To have a full picture of the strength ...

β-delayed neutron emission probability

Example: ${ }^{60} \mathrm{Co}$ decay from http://www.nndc.bnl.gov/

Feeding: $=I_{\beta}=P_{f}^{*} 100$
Comparative half-life: ft_{f}

$$
t_{f}=\frac{T_{1 / 2}}{P_{f}}
$$

${ }_{27}^{60} \mathrm{Co}_{33}{\underset{\sim}{\% B-=100}}^{5+} 1925.28 \mathrm{~d}$
$Q^{-}=2823.9^{5}$

$$
f\left(Z^{\prime}, Q\right)=\text { const } \cdot \int_{0}^{P_{\text {max }}} F\left(Z^{\prime}, p\right) p^{2}\left(Q-E_{e x}\right)^{2} d p
$$

$$
670
$$

$$
\frac{2505.748}{\sqrt{2158.61}} 0.30 \mathrm{ps}
$$

1492
$f t_{f}=$ const $^{\prime} \frac{1}{\left|M_{i f}\right|^{2}}=$ const $\left.^{\prime} \frac{1}{B_{i \rightarrow f}} \quad B_{i \rightarrow f}=\frac{1}{2 J_{i}+1} \right\rvert\,\left\langle\Psi_{f}\right| \tau^{ \pm}$or $\left.\sigma \tau^{ \pm}\left|\Psi_{i}\right\rangle\right|^{2}$
$S_{\beta}(E)=\frac{P_{\beta}(E)}{f\left(Z^{\prime}, Q_{\beta}-E\right) T_{1 / 2}}=\frac{1}{f t(E)}$

$$
t_{f}=\frac{T_{1 / 2}}{P_{f}} \quad T_{1 / 2}=\frac{\ln (2)}{\lambda}=\tau \ln (2)
$$

