Recent achievements and future developments in low-energy Coulomb excitation studies

Magda Zielińska, CEA Saclay

- How does it work?
- What kind of physics can we study?
- shape coexistence $\left({ }^{96,98} \mathrm{Sr}\right)$
- development of deformation $\left({ }^{97,99} \mathrm{Rb}\right)$
- octupole collectivity ($\left.{ }^{220} \mathrm{Rn},{ }^{224} \mathrm{Ra}\right)$
- superdeformation and triaxiality ($\left.{ }^{42} \mathrm{Ca}\right)$
- Future developments
- possibilities with HIE-ISOLDE
- new detectors: SPIDER and SPEDE

Coulomb excitation

- population of excited states via purely electromagnetic interaction between the collision partners

- B(E2) transition probabilities - measure of collectivity
- direct measurement of quadrupole moments including sign - ideal tool to study shape coexistence
- easy way to access non-yrast states and study their properties
- renaissance of the technique as ideally suited for state-of-the-art RIB facilities:
- beam energies available perfect for Coulomb excitation (2-5 MeV/A)
- high cross sections (excitation of 2_{1}^{+}: barns)
- practical at the neutron-rich side

Examples of recent Coulex studies with RIB's

Examples of recent Coulex studies with RIB's

Island of inversion at $\mathrm{N}=20:{ }^{30 \cdot 32} \mathrm{Mg}$ (ISOLDE)

Shape transition at $\mathrm{N}=60$ and shape coexistence around ${ }^{100} \mathrm{Zr}$

- dramatic change of the ground state structure observed at $\mathrm{N}=58,60$ for $\mathrm{Rb}, \mathrm{Sr}, \mathrm{Y}, \mathrm{Zr}$
- onset of deformation at $\mathrm{N}=60$ confirmed by 2^{+} energies and transition probabilities in even-even Zr , Sr
- low-lying 0^{+}states observed in $\mathrm{N}=58,60 \mathrm{Zr}$, Sr

P. Campbell et al., Prog. Part. Nucl. Phys. 86 (2016) 127

Deformation of ${ }^{96} \mathrm{Sr}$

E. Clément et al. PRL 116, 022701 (2016)

Coulomb excitation at REX-ISOLDE: ${ }^{96} \mathrm{Sr}$ on ${ }^{109} \mathrm{Ag},{ }^{120} \mathrm{Sn},{ }^{98} \mathrm{Sr}$ on ${ }^{60} \mathrm{Ni},{ }^{208} \mathrm{~Pb}$

${ }^{98} \mathrm{Sr}$: quadrupole moments and transition probabilities

Deformation of $\mathrm{N}=\mathbf{6 0 , 6 2}{ }^{97,99} \mathrm{Rb}$ studied by Coulex at REX-ISOLDE

- identification of rotational bands in ${ }^{97,99} \mathrm{Rb}$ (first observation of collective states in these nuclei!)
- statistics sufficient for gamma-gamma coincidences - level schemes established

C. Sotty et al., PRL 115 (2015) 172501
- extracted $B(E 2)$ values confirm strong constant deformation in gsb in ${ }^{97,99} \mathrm{Rb}$
- $B(M 1) / B(E 2)$ ratios in ${ }^{97}$ Rb favour $3 / 2^{+}[431]$ configuration of the ground state

Results: deformation of ${ }^{97,99} \mathbf{R b}$ and neighbouring $\mathrm{N}=58,60,62$ nuclei

- visible reduction of Q_{0} for $\mathrm{N}=60{ }^{96} \mathrm{Kr}$ - similar to what is observed for $\mathrm{N}=58$ nuclei
- large deformation appears in ${ }^{97} \mathrm{Rb}$ and remains constant with increasing Z and N :
Q_{0} in ${ }^{97,99} \mathrm{Rb}$ similar to that of $\mathrm{N}=60,62 \mathrm{Zr}$ and Sr nuclei
- $Q_{\text {sp }}$ values from laser spectroscopy confirm a dramatic shape change at $\mathrm{N}=60$ in Rb isotopes, deformation for ${ }^{97} \mathrm{Rb}$ consistent with Coulex results

Coulex studies of octupole strength

- Q_{3} moments are a sensitive probe of octupole collectivity
- decay of negative-parity states proceeds predominantly via E1 and E2 transitions; E3 branches are usually below observation limits
- ...but population of these states in Coulomb excitation proceeds via E3 transitions;
\rightarrow Coulex excitation cross-sections can be related to E3 matrix elements

compilation: T. Kibedi, At. Data Nucl. Data Tables 80 (2002) 35
"Magic" numbers: 34, 56, 88, 134: opposite-parity orbitals with $\Delta \mathrm{L}=3 \hbar$

Octupole deformation: E3 moments measured in Coulomb excitation

${ }^{42} \mathrm{Ca}$: first population of a very highly-deformed band in Coulex

- Coulomb excitation of ${ }^{42} \mathrm{Ca}$ on ${ }^{208} \mathrm{~Pb}$ studied with AGATA at LNL Legnaro
- shape parameters of $0_{1,2}^{+}$and $2_{1,2}^{+}$states determined using quadrupole sum rules
- deformation in the side band: $\beta=0.43(2), \gamma=13(6)^{\circ}$

The first HIE-ISOLDE experiment: Coulex of ${ }^{74-78} \mathbf{Z n}$

Analysis: A. Illana Sison (KU Leuven)

Cross section for multi-step Coulex strongly increased for HIE-ISOLDE beam energies
\rightarrow population of higher-lying states
Verification of conflicting results for ${ }^{74} \mathrm{Zn}$
Statistics for ${ }^{78} \mathrm{Zn} 20 x$ higher than in 2003 REX-ISOLDE run, observation of 4^{+}state

SPEDE: new conversion electron detector for in-beam measurements

- E0 transitions: measure of mixing of coexisting states and difference of their deformation
- internal conversion important for E2 and M1 transitions in heavy nuclei
- commissioning in November 2016
- collaboration of Uni. Jyväskylä, Uni. Liverpool, KU Leuven

Courtesy of D. Cox

SPIDER: segmented Si detector for Coulex at SPES

- two geometries possible: CD-like (8 sectors) or conical (7 sectors); mounted at backward angles for stable beams, forward for RIB's
- developed at INFN Firenze, commissioned in July 2016

Courtesy of M. Rocchini

Conclusions

- low-energy Coulomb excitation has a long tradition and a great future
- great opportunities thanks to higher beam energies at HIE-ISOLDE, new beams at GANIL-SPIRAL1, development of SPES...
- new ancillary detectors are being developed to make efficient use of radioactive beams

