

Overview:

- Astrophysical neutrinos
- Galactic to extragalactic transition of cosmic rays
- Extragalactic UHECR sources
- Minimal model combining astrophysical neutrinos and UHECR
- Conclusions

Astrophysical neutrinos

- shielded and optically transparent medium
- muon travels from 50 m to 50 km through the water at the speed of light emitting blue light along its track

muon

interaction

From F.Halzen

neutrino

lattice of photomultipliers

tracks and showers

2017. Prague. June 29. 2017

Results: energy spectrum

- 283 cascade and 105 track events in 2 years of data
- 106 > 10 TeV, 9 > 100 TeV (7 of those already in high-energy starting event sample)
- Conventional atmospheric neutrino flux observed at expected level with starting events

CECUBE

muon neutrinos through the Earth \rightarrow 6 sigma

From F.Halzen, Paris 2016

Neutrino astrophysics

- IceCube detected first astrophysical neutrinos. New field started: neutrino astrophysics.
- Best flux for cascades 1/E^(2.46+-0.14)
- Flux 1/E^2 disfavored with more then 3 sigma significance
- Muon neutrino data favors 1/E^2.06+-0.13 flux !
- Flavor ratio consistent with 1:1:1 as expected
- Cosmogenic neutrinos best constrained by IceCube, but in case of nuclei primaries bigger detector needed to find flux
- Bigger detectors needed for next step

IceCube neutrino sky map 4 years E> 100 TeV and Fermi E>100 GeV 5 degree smoothed

IceCube + Fermi LAT all sky: protons 1/E^2.5

A.Neronov, D.S. arXiv:1412.1690

Evidence of Galactic component in 4 year IceCube data E>100 TeV

A. Neronov & D.S. arXiv: 1509.03522

Post-trial probability is 1.7*10⁻³

A. Neronov & D.S. arXiv: 1509.03522

From F.Halzen, Paris 2016

From F.Halzen, Paris 2016

6 years of IceCube data: sensitivity to Galactic plane

IceCube collabortion, arXiv: 1607.08006

North and South sky: IceCube

A. Neronov & D.S. arXiv: 1603.06733

First galactic diffuse sources

A. Neronov & D.S. arXiv: 1603.06733

Transition from galactic to extragalactic cosmic rays

Dip model: Protons can fit UHECR data

V.Berezinsky, astro-ph/0509069

Mixed composition model

D.Allard, E.Parizot and A.Olinto, astro-ph/0512345

Detection techniques

Pierre Auger Observatory South site in Argentina almost finished North site – project

Surface Array 1600 detector stations 1.5 Km spacing 3000 Km² (30xAGASA)

Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 Telescopes total

Tanks aligned seen from Los Leones

Auger composition 2009: nuclei!

Mixed composition model

D.Allard, E.Parizot and A.Olinto, astro-ph/0512345

UHECR sources

UHECR sources with mixed composition

From D.Allard et al

Anisotropy dipole

Pierre Auger Collaboration, arXiv:1103.2721

Galactic sources: dipole calculation

Turb. Magn. Field spectrum Kolmogorov/Kraichnan

Lmax = 100-300 pc

G.Giacinti, M.Kachelriess, D.S. and G.Gigl, arXiv:1112.5599

Auger cosmposition measurements

Auger Collaboration, arXiv:1409.5083

Auger limit on Fe fraction

Extragalactic proton sources

UHECR sources p-gamma interaction with tau>1 for nuclei

D.Allard et al, 1505.1377

M.Unger et al, 1505.02153

Idea: nuclei interact with photon background and neutrinos escape

M.Unger et al, 1505.02153

UHECR sources with tau>1 for nuclei

UHECR sources with tau>1 for nuclei

M.Unger et al, 1505.02153

Problem: does not explain IceCube

M.Unger et al, 1505.02153

UHECR, neutrino and gamma-ray sources

UHECR proton flux from Star Burst galaxies

Neutrinos not from GRB

IceCube collaboration:1601.06484

Miltimessenger signal from BL Lacs: dependence on escape energy

0.3 TeV

100 TeV

G.Giacinti, M.Kachelriess, O.Kalashev, A.Neronov and D.S., arXiv: 1507.07534

Fermi blazars and IceCube neutrinos

A.Neronov et al, arXiv:1611.06338

Neutrinos not from blazars

A.Neronov et al, arXiv:1611.06338

AGNs: Proton-proton interactions in the source region

AGN's: P-gamma + Proton-proton interactions in the source region

Kachelriess et al, 1704.06893

Summary

- First diffuse neutrino flux measurements contain both galactic and extragalactic components. Evidence of Galactic component come in 4 years of IceCube cascade data
- Galactic component give at least 50% of total flux, but can be as low as 10% in the north sky
- Galactic to extragalactic transition is around 10 PeV in protons, i.e. one expects both contributions for 1 PeV neutrinos

Summary

- Extragalactic component was measured with 6 years of muon neutrino data. It has flux 1/E^2.1 above 200 TeV and unknown origin
- One can explain UHECR data with p-gamma interaction in UHECR sources
- Sources of UHECR can give main contribution to extragalactic astrophysical neutrinos if after p-gamma protons come through p-p interactions