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Nuclear parton distributions
• Recent CTEQ analysis of  
nuclear PDFs with 
comparisons to other fits 
⇒Large uncertainties, 

especially at low x 

• New data needed to 
reduce uncertainties 
–Theoretical proposal by  

Strikman et al in 2005:  
⇒measure dijet photo-

production in ultra-
peripheral nuclear  
collisions 

⇒Until now, not realized by 
any experiment
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Measurement Coverage
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Figure adapted from EPPS16 
1612.05741 [hep-ph]  



Measurement Coverage
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UPC jets

Figure adapted from EPPS16 
1612.05741 [hep-ph]  
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Photo-nuclear processes

• Left: direct processes 
– photon couples directly to nuclear parton 

• Right: resolved processes 
– photon virtually resolved into “hadronic” state which 

subsequently scatters 
• For both, struck nucleus breaks up 
– (nominally) photon-emitting nucleus does not
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Zero degree calorimeters (ZDCs)

• ATLAS ZDCs measure beam-rapidity neutrons 
emitted in Pb+Pb collisions 
–hadronic collisions in nucleus produce ≥ 1 neutron 

in target direction with probability ≈ 1 
–photon-emitting nucleus nominally emits 0 neutrons 
⇒However, additional soft photon exchanges cause 

neutron emission ~ 30% of  the time.
6



ZDC selection

• Events selected using ZDC 0nXn condition 
⇒Some inefficiency in ZDC trigger rejection due  

to out-of-time pile-up 

• + gap requirements to suppress hadronic 
photo-diffractive, γγ→qqbar backgrounds
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Gap analysis

• Require gap on photon side: Σγ Δη > 2 
• Reject large gaps on nuclear side: ΣA Δη < 3 8



Gap distributions

• Left: compare of  edge and sum gap variables 
–Off-diagonal contributions result primarily from 

resolved photon events 

• Right: gap sums in 𝛾, A directions 

–applied cuts indicated
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• Left: Σ𝛾Δη vs Ntrk for 0nXn 

• Right: Ntrk distributions for events with  
(Σ𝛾Δη > 2) and without (Σ𝛾Δη < 1) gaps. 
⇒clear difference between photo-nuclear and 

hadronic collision events 

Event Topology: Gaps vs Multiplicity
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The measurement: jets and kinematics
• Jets reconstructed using anti-kt algorithm w/ R = 0.4 
– EM+JES calibration + flavor correction 

• Measure differential cross-sections vs HT, xA, zγ  

– pz, zγ, y defined to be positive in photon direction
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The measurement: jets and kinematics
• Jets reconstructed using anti-kt algorithm w/ R = 0.4 
– EM+JES calibration + flavor correction 

• Measure differential cross-sections vs HT, xA, zγ  

– pz, zγ, y defined to be positive in photon direction 

• For 2→2 processes: 
– xA→ x of  struck parton in nucleus, z𝛾 →x𝛾 y𝛾, HT → 2Q
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The measurement: jets and kinematics
• Jets reconstructed using anti-kt algorithm w/ R = 0.4 
– EM+JES calibration + flavor correction 

• Measure differential cross-sections vs HT, xA, zγ  

– pz, zγ, y defined to be positive in photon direction 

• For 2→2 processes: 
– xA→ x of  struck parton in nucleus, z𝛾 →x𝛾 y𝛾, HT → 2Q 

• Fiducial acceptance: 
⇒pT

lead > 20 GeV, pT
sub-lead > 15 GeV 

⇒|ηjet| < 4.4, HT > 40 GeV

13



The measurement: jets and kinematics
• Jets reconstructed using anti-kt algorithm w/ R = 0.4 
– EM+JES calibration + flavor correction 

• Measure differential cross-sections vs HT, xA, zγ  

– pz, zγ, y defined to be positive in photon direction 

• For 2→2 processes: 
– xA→ x of  struck parton in nucleus, z𝛾 →x𝛾 y𝛾, HT → 2Q 

• Fiducial acceptance: 
⇒pT

lead > 20 GeV, pT
sub-lead > 15 GeV 

⇒|ηjet| < 4.4, HT > 40 GeV 

• No unfolding for jet response 14



Photo-nuclear Monte Carlo 
• Pythia 6 used in “mu/gamma + p” mode to 
simulate photo-production @ 5.02 TeV 
–Contains mixture of  direct and resolved processes 
⇒But does not have appropriate photon flux  

• STARlight model describes photon flux in 
ultra-peripheral nucleus-nucleus collisions 
–Used modified STARlight to calculate weights 

applied on per-event basis to Pythia sample: 
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DRAFT

As discussed above, the experimentally accessible part of the photo-nuclear cross section only receives190

contributions from events where there are no additional hadronic interactions. Thus the cross section191

must be multiplied by a factor PUPC(b), where b is the impact parameter of the collision. STAR�����192

also also contains a model of the nuclear geometry and hadronic interactions and can be used to calculate193

PUPC(b).194

For the process A + B! � + B! X , the EPA cross section is:195

d�AB
EPA

d2sAd2sBdE
⌘

dNA
�

dEd2sA

d��B

d2sB
, (4)

where the coordinates sA and sB denote coordinates in the target and projectile nuclei A and B, respectively.196

The cross section for � +B scattering can be expressed in terms of the � + N cross section and the nuclear197

thickness function TB(sb), which is the transverse density of nucleons in the nucleus per unit area,198

d��B

d2sB
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The total cross section is obtained by multiplying by PUPC and integrating over the projectile and target.199

Thus,200

d�Pb+Pb
UPC
dE

= 2
Z

d2b PUPC(b)
Z

d2sB
d2NPb

�

dE d2sA

������ ~sA=~b� ~sB

TPb(sB)��N ⌘
dNe�

�

dE
��N , (6)

where factor of 2 has been inserted to account for the symmetry of the Pb+Pb collision system. The201

P����� + STAR����� model is constructed by using STAR����� to obtain dNe�
� /dE and using it to define202

a weight,203
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dE

, dNP�����
�

dE
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which is applied to the generated P����� events.204

5 Analysis205

5.1 Reconstruction206

The events used for this analysis were reconstructed using a configuration of the ATLAS software typically207

used in pp collisions. The reconstruction of charged particle tracks used the same settings and selections208

as those applied in minimum-bias measurements [16]. Calorimeter clusters were reconstructed using the209

same method applied in other ATLAS analyses [17] but with thresholds set appropriate for low-luminosity210

conditions. The jets were reconstructed using the heavy ion jet reconstruction algorithm configured for211

small underlying event energy densities.212

This measurement uses R = 0.4 anti-kt jets. Following well-established procedures within ATLAS [18],213

the jet energies are calibrated initially using constants obtained from MC evaluations of the jet response in214 p
s = 5 TeV pp collisions. A set of corrections is applied to the jet energies to account for the di�erence215

in flavor composition between the jets in this measurement and inclusive jet production in pp collisions.216

Data-driven corrections are performed to account for di�erences between data and MC simulations. A217
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Monte Carlo re-weighting

• Data and MC z𝛾 distributions and ratio 
–with and w/o re-weighting 16

γz
/d

N
 d

ev
t

N
1/

1−10

1

10

210

310

410

 PreliminaryATLAS
-1Pb+Pb 2015, 0.38 nb

 = 5.02 TeV, 0nXnNNs
, R = 0.4 jetstanti-k

 > 35 GeVjetsm > 20 GeV, lead
T
p

Data
Pythia
Pythia+STARlight

γz
4−10 3−10 2−10

D
at

a/
M

C
 ra

tio

0

0.5

1

1.5

Not unfolded for
detector response

Re-weighted  
Pythia in good  
(not perfect) 
agreement  
with data



Data-MC comparisons

• Good agreement for Σγ 
Δη after re-weighting 
⇒Can trust MC-based 

corrections for event 
selection efficiency
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2-D cross-sections

• Acceptance in (zγ, xA) strongly dependent on 
minimum jet system mass 
–Determined by minimum pT in analysis 
⇒Easiest way to get to low xA is large zγ
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Corrections and systematics
• Correct for inefficiency introduced by event 
selection requirements 
–ZDC inefficiency: can lose 0n1n contribution 
⇒On average: 0.98 ± 0.01 
–“EM pileup”: extra neutrons from EM dissociation 
⇒5 ± 0.5% on overall normalization 
–Signal events removed by gap requirement 
⇒resulting inefficiency evaluated in MC sample 
⇒ ~1% correction except at very large z𝛾 

• Luminosity: 6.1% uncertainty 
• Jet response:  
–energy scale and resolution uncertainties 
⇒ vary with HT, xA, z𝛾

19



Results: HT Dependence
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Results: zγ dependence
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Results: xA Dependence

• Data agrees w/ MC over most of  acceptance 
⇒But limitations in MC sample (e.g. no γ+n, no nPDF)
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Summary, conclusions
•Presented a measurement of  photo-nuclear  
jet production: ATLAS-CONF-2017-011 
–Qualitatively different than normal jet production  

 in hadronic or Pb+Pb collisions 
–Expected features: rapidity gaps and 0nXn 
⇒observed in the data 
–Good but not perfect MC-data agreement 
⇒Need MC with Pb+Pb EPA photon flux to avoid re-

weighting which has conceptual difficulties 

•Proof  of  principle that photo-nuclear dijet/multi-
jet measurements possible in Pb+Pb collisions 
–Can access xA, Q2 (HT) range not covered by existing 

fixed-target data.  
⇒kinematic coverage primarily constrained by 

minimum jet pT, but also Σ𝛾Δη > 2 requirement 23
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UPC dimuon 

• Provides valuable estimate/constraint on 
potential γγ→qqbar backgrounds 
–qqbar rate @ given, M, y ~ dimuon 
⇒After gap cuts, negligible background
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Gap distributions
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Jet kinematics

• Left:  
–single jet pT for leading, sub-leading, all other jets 

• Right: 
–dijet Δφ distributions for 2, 3, >3 jet events
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Triggers & Event selection
• The base trigger required: 
–  ≥ 1 neutron in one ZDC, zero neutrons in the other 
⇒exclusive OR 
–Minimum total transverse energy, ΣET > 5 GeV 
–Maximum total transverse energy, ΣET < 200 GeV 

• Two additional triggers were used that 
required jets with pT > 25 GeV (nominally). 
–Jet triggers sampled total luminosity of  0.38 nb-1  
⇒Note: Pb+Pb hadronic cross-section is 7.7 b. 

• ZDC used to select 0nXn events (fiducial) 
⇒no correction for photon emitter breakup  

• Additional gap requirements to suppress 
hadronic, diffractive, γγ→qqbar backgrounds

28



Direct processes
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Resolved processes
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Ultra-peripheral Pb+Pb collisions
• Ultra-relativistic nuclei  
source strong EM fields 

• Photons coherently emitted  
by entire nucleus are  
enhanced by Z2  

–  k𝛾⊥ ~ ℏc / 2RA ~ 15 MeV,  

– k𝛾z = γboost x k𝛾⊥ ~ 40 GeV 

⇒In AA collisions, energetic enough to stimulate hard 
scattering processes at low x in the target 

⇒Cross-section enhanced by Z2A ~ 1.5 x 106 compared 
to pp collisions at the same √s 

• Photo-nuclear dijet/multi-jet production 
measured using 2015 √sNN = 5.02 TeV Pb+Pb data
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