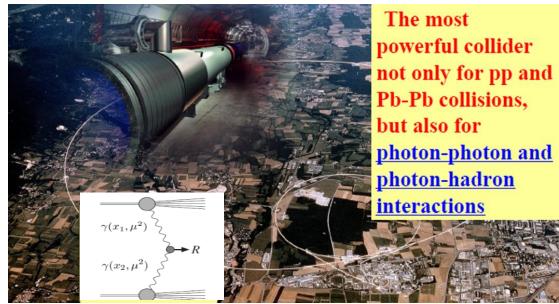


17th International Conference on Elastic and Diffractive Scattering Prague, Czech Republic, 26-30 June 2017


PHOTON-PHOTON COLLISIONS AT THE LHC (very selected topics)

Valery Khoze (IPPP, Durham & PNPI, St.Pb.)

(in collaboration with Lucian Harland-Lang and Misha Ryskin)

Outline

- Introduction and Motivation.
- SuperChic- MC and Survival Guide
- The photon PDF and photon-photon Luminosities
- Photon-initiated processes with rapidity gaps
- Summary and Outlook.

INTRODUCTION & MOTIVATION

• No immediate plans for a future $\gamma\gamma$ collider, but the LHC is already a photon-photon collider!

(FNAL/RHIC-experience)

Motivation: why study $\gamma\gamma$ collisions at the LHC?

Exclusive production:

How do we model it?

Example processes: lepton pairs, anomalous couplings, light-by-light scattering, axion-like particles and massive resonances. charginos, invisibles...
 Outlook - tagged protons at the LHC.

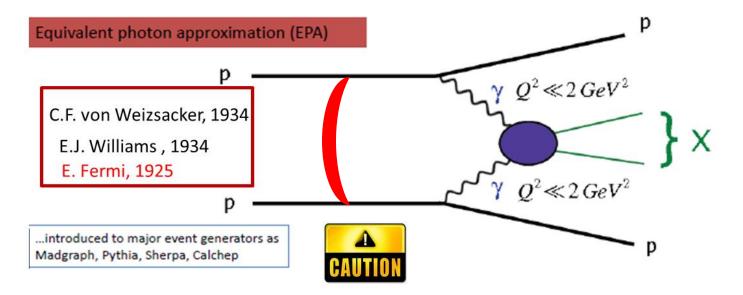
"The $\gamma\gamma$ - Resonance that Stole Christmas 2015"

ATLAS & CMS seminar on 15 Dec. 2015

The ATLAS announcement of a 3.6 σ local excess in diphotons with invariant mass ~750 GeV in first batch of LHC Run –II data, combined with CMS announcing 2.6 σ local excess. EW Moriond, 17.03.2016 Theoretical community –frenzy of model building: >150 papers within a month.

Unprecedented explosion in the number of exploratory papers. (More than 600 papers)

If it were not a statistical fluctuation, a natural minimal interpretation: scalar/pseudoscalar resonance coupling dominantly to photons.


As an outcome -great improvement in our understanding of photon PDF and development of the effective tools for analysing potential diphoton resonances.

Modelling Exclusive Photon-Photon collisions

- In exclusive photon-mediated interactions, the colliding protons must both coherently emit a photon, and remain intact after the interaction. How do we model this?
- Answer is well known- the <u>'equivalent photon approximation' (EPA)</u>: cross section described in terms of a flux of quasi-real photons radiated from the proton, and the $\gamma\gamma \to X$ subprocess cross section.

Equivalent photon approximation

• Initial-state $p \rightarrow p\gamma$ emission can be to v. good approximation factorized from the $\gamma\gamma \rightarrow X$ process in terms of a flux:

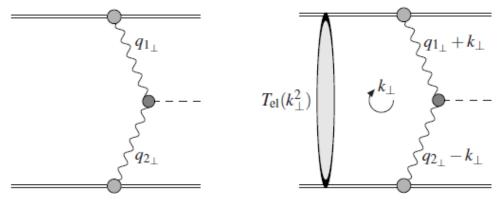
$$n(x_i) = \frac{1}{x_i} \frac{\alpha}{\pi^2} \int \frac{\mathrm{d}^2 q_{i_\perp}}{q_{i_\perp}^2 + x_i^2 m_p^2} \left(\frac{q_{i_\perp}^2}{q_{i_\perp}^2 + x_i^2 m_p^2} (1 - x_i) F_E(Q_i^2) + \frac{x_i^2}{2} F_M(Q_i^2) \right)$$

• Cross section the given in terms of $\gamma\gamma$ `luminosity':

$$\frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{\mathrm{EPA}}}{\mathrm{d}M_X^2 \,\mathrm{d}y_X} = \frac{1}{s} n(x_1) n(x_2)$$
The two-photon particle production mechanism.
Physical problems. Applications. Equivalent photon Approximation
 $\mathcal{L}_{\gamma\gamma}^{\mathrm{EPA}} = \frac{1}{s} n(x_1) n(x_2)$
The two-photon particle production mechanism.
Physical problems. Applications. Equivalent photon Approximation
 $\mathcal{L}_{\alpha}^{\mathrm{EPA}} = 0$
 $\mathcal{L}_{\alpha}^{\mathrm{EPA}} = \langle S_{\mathrm{eik}}^2 \rangle \frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{\mathrm{EPA}}}{\mathrm{d}M_X^2} \mathrm{d}y_X \, \hat{\sigma}(\gamma\gamma \to X)$

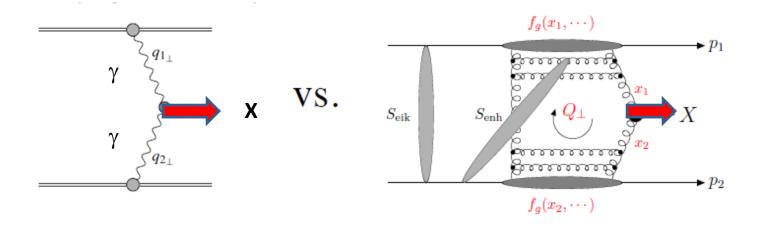
$$\begin{cases} \langle S_{\mathrm{eik}}^2 \rangle = 0.72 & : \quad J_P = 0^+ \\ \langle S_{\mathrm{eik}}^2 \rangle = 0.77 & : \quad J_P = 0^- \end{cases}$$
In fact, the situation is more complicated due to the effects caused by the polarization structure of the production amplitude.

SURVIVAL GUIDE

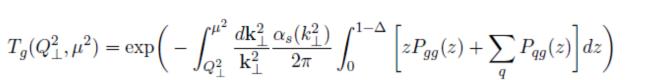

Soft survival factor

• In any *pp* collision event, there will in general be 'underlying event' activity, i.e. additional particle production due to *pp* interactions secondary to the hard process (a.k.a. 'multiparticle interactions', MPI).

 $\gamma\gamma$ -initiated interaction is no different, but we are now requiring final state with no additional particle production (X + nothing else).


Must multiply our cross section by probability of no underlying event activity, known as the soft 'survival factor'.

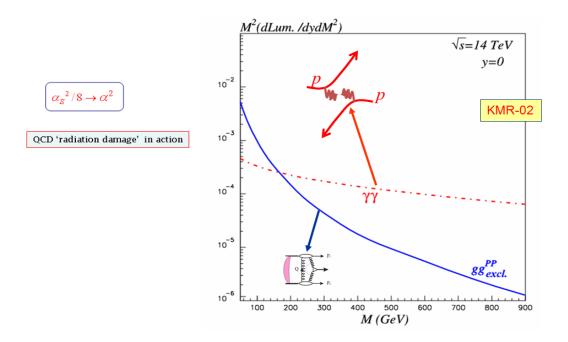
(Giulia, Sergey)



Durham Group-KMR Tel-Aviv Group- GLM

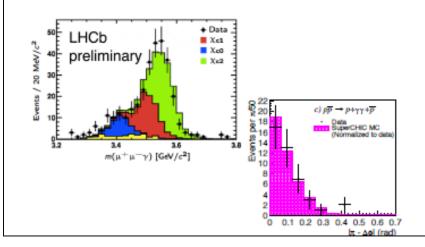
S. Ostapchenko... Lonnblad & Zlebcik

- Naively expect strong interaction to dominate- $\alpha_S \gg \alpha$.
- However QCD enhancement can also be a weakness: exclusive event requires no extra gluon radiation into final state. Requires introduction of Sudakov suppressing factor:



'Large' Pomeron size in the production of the small size objects.

KMR-2001


• Increasing $M_X \Rightarrow$ larger phase space for extra gluon emission stronger suppression in exclusive QCD cross section. Gluons like to radiate! + absorptive/rescattering effects- survival factor S_{soft}^2

- Situation summarised in 'effective' exclusive gg and $\gamma\gamma$. luminosities. This Sudakov suppression in QCD cross section leads to enhancement in $\gamma\gamma$ already* for $M_X \gtrsim 200 \,\text{GeV}$ - well before CT-PPS/AFP mass acceptance region.
- \longrightarrow Can study $\gamma\gamma$ collisions at the LHC with unprecedented $s_{\gamma\gamma}$.

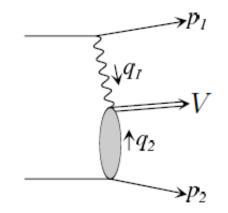
SuperChic

- A MC event generator for CEP processes. Common platform for:
- QCD-induced CEP.
- Photoproduction.
- Photon-photon induced CEP
- With fully differential treatment of survival effects.
- Photon-induced collisions currently for e/p beams. Work towards heavy ions ongoing
- Fortran-based. Generates histograms and unweighted (LHE/HEPEVT) events with arbitrary user-defined cuts.

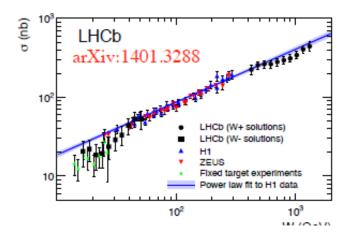
arXiv:1508.02718

Exclusive physics at the LHC with SuperChic 2

L.A. Harland–Lang¹, V.A. Khoze^{2,3}, M.G. Ryskin³

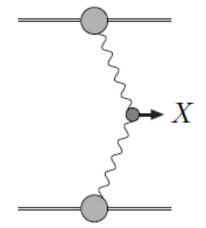

¹Department of Physics and Astronomy, University College London, WC1E 6BT, UK ²Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE ³Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, St. Petersburg, 188300, Russia

Abstract


We present a range of physics results for central exclusive production processes at the LHC, using the new SuperChic 2 Monte Carlo event generator. This includes

Generated Processes - photoproduction

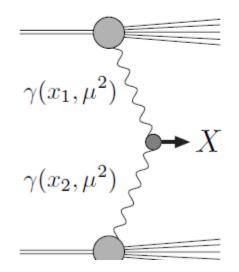
- $\rho(\rightarrow \pi^+\pi^-)$
- $\phi(\rightarrow K^+K^-)$
- $J/\psi(\rightarrow \mu^+\mu^-)$
- $\Upsilon(\rightarrow \mu^+ \mu^-)$ $\psi(2S)(\rightarrow \mu^+ \mu^-, J/\psi \pi^+ \pi^-)$



• Takes simple power-law fit to HERA/LHC data.

Generated Processes - photon-photon

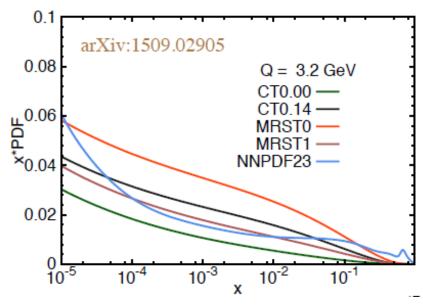
- SM Higgs to $b\overline{b}$
- $W^+W^- \rightarrow ll\nu\nu$, including spin correlations.
- $\gamma\gamma$ (light-by-light).
- Monopolium, Monopole pairs*.
- In official release, both proton and electron beams included. Work ongoing on including heavy ions.


*To appear in next version.

Photon-photon Luminosities

- Inclusive production of X + anything else.
- Can write LO cross section for the $\gamma\gamma$ initiated production of a state in the usual factorized form:

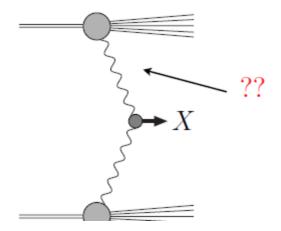
$$\sigma(X) = \int \mathrm{d}x_1 \mathrm{d}x_2 \,\gamma(x_1, \mu^2) \gamma(x_2, \mu^2) \,\hat{\sigma}(\gamma\gamma \to X)$$


but in terms of *photon* parton distribution function (PDF), $\gamma(x, \mu^2)$.

• Earlier photon PDF sets either:

Not so long ago

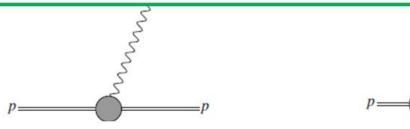
- 'Agnostic' approach. NNPDF2.3QED: treat photon as we would quark and gluons. Freely parametrise $\gamma(x, Q_0)$ and fit to DIS and some LHC W, Z data.
- 'Model' approach. MRST2004QED/CT14QED: take simple ansatz for photon emission from quarks. Compare/fit to ZEUS isolated photon DIS.


- Comparing these different sets reveals apparently large uncertainties.
 - Model-independent uncertainty (NNPDF) was 50–100%

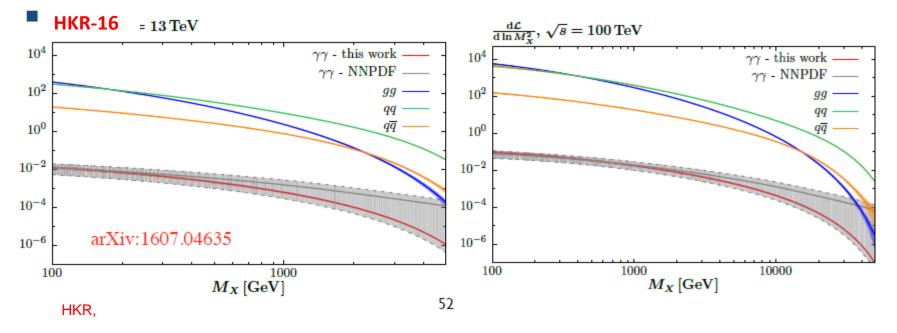
PDFs and QED

• Previous approaches missing crucial physics ingredient - the contribution from elastic photon emission. QED is a long range force!

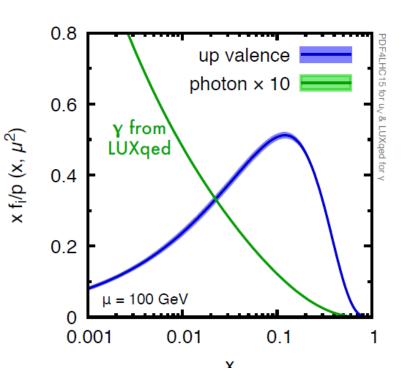
→ Use what we know about exclusive production to constrain the (inclusive) photon PDF.


• How do we do this? Consider what can generate initial state photon in $\gamma\gamma \to X$ production process:

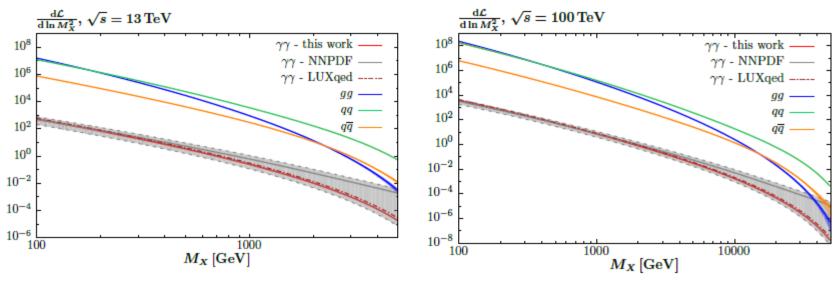
Photon distribution inside the proton (photon PDF)


- Crucial point:
 - At low $Q^2 \lesssim 1 \,\text{GeV}^2$: photon is dominantly generated by well understood coherent emission ($p \to p\gamma$).
 - At high $Q^2 \gtrsim 1 \,\text{GeV}^2$: photon generated by DGLAP emission off quarks (with well constrained PDFs).
- \rightarrow Photon PDF is in fact under very good control.

• We treat the coherent emission process exactly as in exclusive production, while taking simple model for (low scale) incoherent. Sufficient to give some fairly dramatic results w.r.t. previous studies.


• Previous result translates to large uncertainty and potentially large luminosity at high mass. q, g fall much more steeply than central γ NNPDF prediction. (pre '750-explosion')

• Our approach: scaling very similar to $qq/q\overline{q}$, with gg only slightly stepper. Uncertainties fairly small, again a lower end of NNPDF band.



photon PDF results

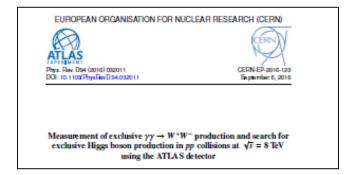
- Model-independent uncertainty (NNPDF) was 50–100%
- ► Goes down to O(1%) with LUXqed determination

Comparison with LUXqed

• Comparing our and LUXqed $\gamma\gamma$ luminosities can see these are quite similar (\rightarrow importance of coherent component).

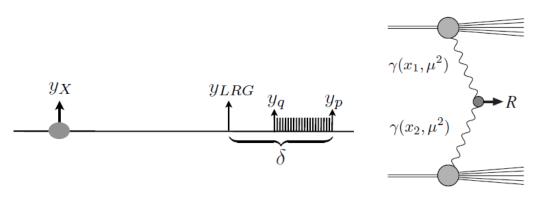
• Devil is in detail - some enhancement seen in LUXqed at higher M_X , appears to be due to low Q^2 resonant contribution.

• However, clear we have moved beyond the era of large photon PDF uncertainties. Now interested in precision determinations.


Photon-initiated processes with rapidity gaps

Caveat: in the real life, when studying photon-photon processes we as a rule need to go beyond the inclusive photon PDF (event selection: rapidity gaps, isolation cuts..)

CMS	EBN-EP/2016-073 2016/09/09
CMS-FSQ-13-008	
constraints on anot	usive $\gamma \gamma \rightarrow W^+W^-$ production and malous quartic gauge couplings in pp ions at $\sqrt{s} = 7$ and 8 TeV
т	he CMS Collaboration*



• Semi-exclusive processes with rapidity gaps: how do we include a rapidity veto within the standard inclusive approach?

HKR arXiv:1601.03772

• Comparison to CMS 7 and 8 TeV $\mu^+\mu^-$ data.

• Due to strong q_t ordering, all previous emissions will have $y > y_q > y_{LRG}$

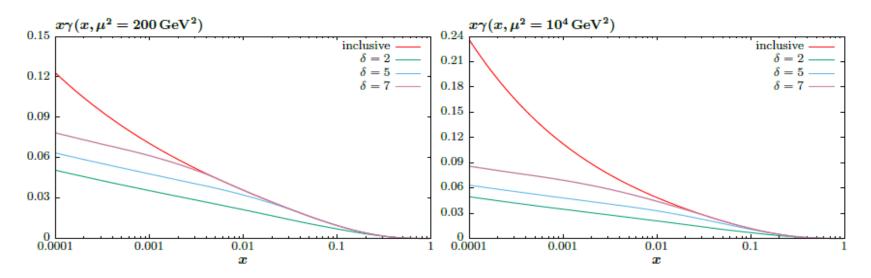
- Require no additional particles out to rapidity y_{LRG}
- How does this effect photon?

$$\gamma(x,\mu^2) \equiv \gamma^{\rm in}(x,\mu^2) + \gamma^{\rm evol}(x,\mu^2)$$

• $\gamma^{in}(x,\mu^2)$: input component due to low scale elastic and inelastic photon emission. Transverse momenta q_t of produced secondaries $q_t < Q_0$

• Working in terms of interval $\delta = y_p - y_{LRG}$ between proton and gap, requirement that rapidity of final-state quark $y_q > y_{LRG}$ translates to

$$y_p - y_q = \ln\left(\frac{q_t}{m_p}\frac{z}{x(1-z)}\right) < \delta$$
,


• And photon PDF becomes simply:

$$\begin{split} \gamma(x,\mu^2) &= \gamma(x,Q_0^2) \, S_{\gamma}(Q_0^2,\mu^2) + \int_{Q_0^2}^{\mu^2} \frac{\alpha(Q^2)}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} \int_x^1 \frac{dz}{z} \bigg(\sum_q e_q^2 P_{\gamma q}(z) q(\frac{x}{z},Q^2) \\ &+ P_{\gamma g}(z) g(\frac{x}{z},Q^2) \bigg) \, S_{\gamma}(Q^2,\mu^2) \Theta\left[e^{\delta} - \frac{q_t}{m_p} \frac{z}{x(1-z)} \right] \,, \end{split}$$
(RG veto in DGLAP equation

- tion)
- x/z

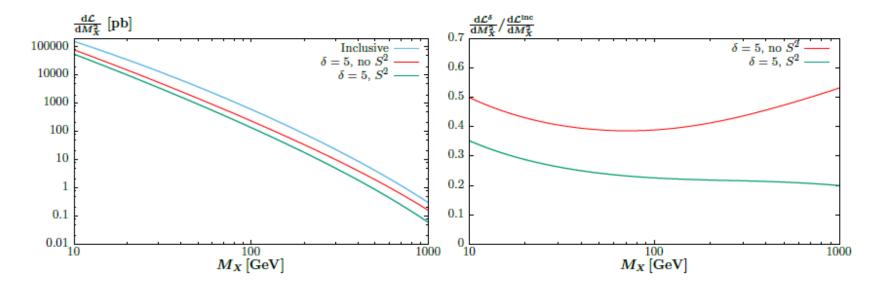
Modified photon PDF

Suppression due to LRG veto.

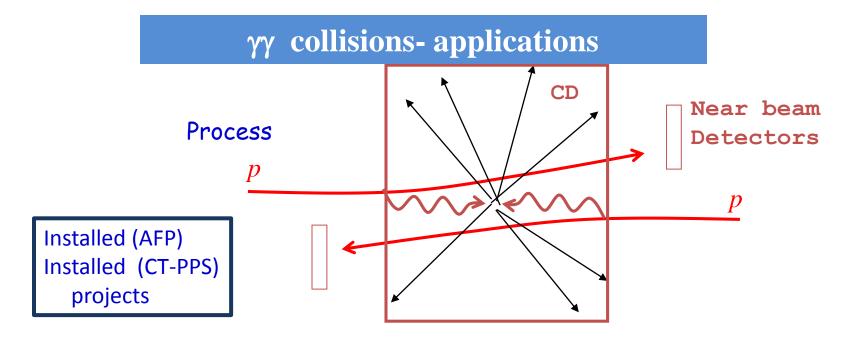
 $\gamma(x,\mu^2) = \gamma^{\rm in}(x,\mu^2) + \gamma^{\rm evol}(x,\mu^2;\delta)$

phenomenological objects only-factorization explicitly violated by rescattering effects

• Not the end of the story. Protons may interact additionally- underlying event. Include probability that this does not happen: the survival factor.



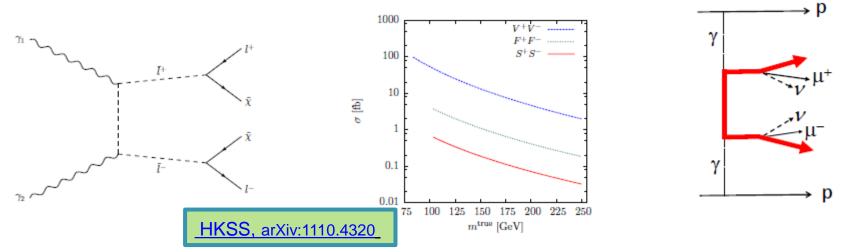
←(*p*)


 b_{\perp}

 $(p) \rightarrow$

- As S^2 depends on proton b_t , it is sensitive to emission process for both protons \Rightarrow can no longer define independent $\gamma^{\text{veto}}(x, \mu^2)$.
- Instead have effective $\gamma\gamma$ luminosity: $\frac{d\mathcal{L}}{dM_X^2} = \frac{1}{s} \int_{\tau}^{1} \frac{dx_1}{x_1} \gamma(x_1, M_X^2) \gamma(\tau/x_1, M_X^2)$

 $\tau = M_X^2/s$ and we take $\mu^2 = M_X^2$ as the scale of the PDFs


Extensive Program • $\gamma \gamma \rightarrow \mu\mu$, ee QED processes • $\gamma \gamma \rightarrow QCD$ (jets..) • $\gamma \gamma \rightarrow WW$ anomalous couplings • $\gamma \gamma \rightarrow Squark$, top... pairs • $\gamma \gamma \rightarrow Charginos$ (natural SUSY) • New BSM objects

$$pp
ightarrow p + \gamma \gamma + p ,$$

 $\gamma \gamma
ightarrow X^+ X^-$

Diphoton X-Pair Production

where X = W-boson, lepton, slepton, chargino...

 If particle decays semi-invisibly, then additional information from tagged proton momenta can be used to measure masses and discriminate BG.

• Consider exclusive production of chargino pair $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, decaying via

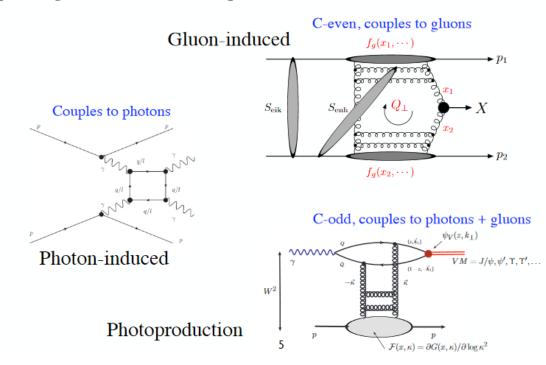
$$\tilde{\chi}_1^+(\tilde{\chi}_1^-) \rightarrow I^+(I^-) + \nu(\overline{\nu}) + \tilde{\chi}_1^0$$
,

electroweakinos

- where the $\tilde{\chi}_1^0$ is an LSP neutralino.
- For cases that ΔM = M(χ̃⁰₁) M(χ̃[±]₁) is relatively small, can be difficult to observe inclusively. (compressed mass BSM scenarios)

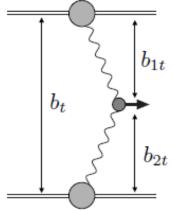
Summary & Outlook

- No immediate plans for a future $\gamma\gamma$ collider, but the LHC is already a photon-photon collider!
- The $\gamma\gamma$ initial state naturally leads to exclusive events, with intact outgoing protons.
- Theory well understood, and use as highly competitive and clean probe of EW sector and BSM physics already demonstrated at LHC. Much further data with tagged protons to come.
- Such studies equally possible (with higher $s_{\gamma\gamma}$) at FCC. (Patricia)
- **SuperChic** a MC event generator for CEP processes.
 - Unified platform for QCD-induced, photoproduction and photonphoton collisions.
 - Fully differential treatment of survival factor.
- A formalism (HKR-16) is developed allowing to describe photon-induced events with LRG in terms of modified photon PDF with consistent implementation of the soft survival effects.



Photon-photon collisions in Superchic

Production mechanisms

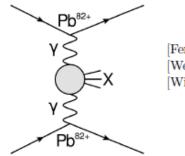

Exclusive final state can be produced via three different mechanisms, depending on kinematics and quantum numbers of state:

Soft survival factor

• How do we calculate the survival factor? Work in impact parameter space and apply 'eikonal' approach:

$$\left\langle S^2 \right\rangle = \frac{\int \mathrm{d}^2 \mathbf{b}_{1t} \, \mathrm{d}^2 \mathbf{b}_{2t} \, |T(s, \mathbf{b}_{1t}, \mathbf{b}_{2t})|^2 \exp(-\Omega(s, b_t))}{\int \mathrm{d}^2 \, \mathbf{b}_{1t} \mathrm{d}^2 \mathbf{b}_{2t} \, |T(s, \mathbf{b}_{1t}, \mathbf{b}_{2t})|^2} ,$$

 $\exp(-\Omega(s, b_t))$: Poissonian probability of no inelastic \uparrow scattering at impact parameter b_t . proton opacity


• Underlying event generated by soft QCD. Cannot use pQCD \Rightarrow take phenomenological approach to this non-pert. observable.

• Have:
$$\frac{\mathrm{d}\sigma^{pp\to pXp}}{\mathrm{d}M_X^2\mathrm{d}y_X} = \langle S^2 \rangle \frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{\mathrm{EPA}}}{\mathrm{d}M_X^2\mathrm{d}y_X} \hat{\sigma}(\gamma\gamma \to X)$$

V.A. Khoze, A.D. Martin, M.G. Ryskin, arXiv:1306.2149

UPC

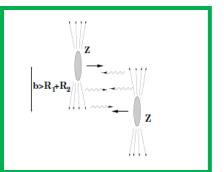
• Ions do not necessarily collide 'head-on' - for 'ultra-peripheral' collisions, with $b > R_1 + R_2$ the ions can interact purely via EM and remain intact \Rightarrow exclusive $\gamma\gamma$ -initiated production.

[Fermi, Nuovo Cim. 2 (1925) 143]
 [Weizsacker, Z. Phys. 88 (1934) 612]
 [Williams, Phys. Rev. 45 (10 1934) 729]

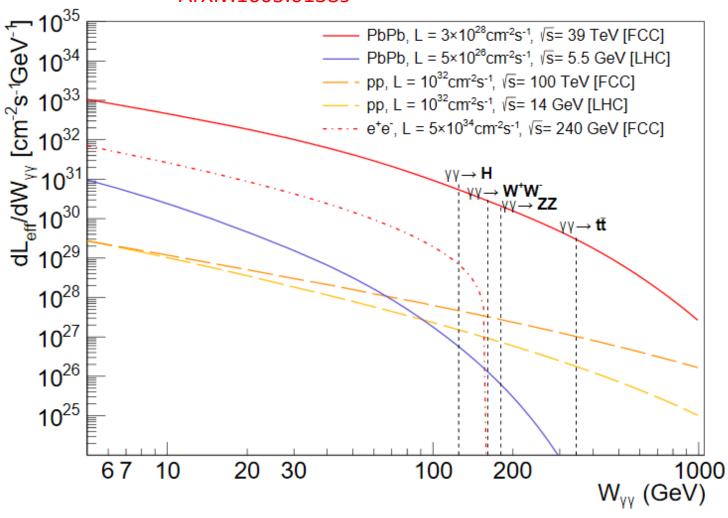
$$Q^2 < \frac{1}{R^2}$$
 and $\omega_{\max} \approx \frac{\gamma}{R}$

• Ions interact via coherent photon exchange- feels whole charge of ion \Rightarrow cross section $\propto Z^4$. For e.g. Pb-Pb have $Z^4 \sim 5 \times 10^7$ enhancement!

• Photon flux in ion tends to be cutoff at high M_X , but potentially very sensitive to lower mass objects with EW quantum numbers.


Ongoing work

- So far the current processes are included:
 - SM Higgs to $b\overline{b}$
 - $W^+W^- \rightarrow ll\nu\nu$, including spin correlations.
 - ▶ l⁺l⁻
 - $\gamma\gamma$ (light-by-light).
- In all cases with e/p beams.
- Recalling form of cross section for *pp* collisions:


$$\frac{\mathrm{d}\sigma^{pp\to pXp}}{\mathrm{d}M_X^2\mathrm{d}y_X} \sim \frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{\mathrm{EPA}}}{\mathrm{d}M_X^2\mathrm{d}y_X} \hat{\sigma}(\gamma\gamma \to X)$$
• Two clear ways to extend: • New beam types.
• New processes.

• Work ongoing in both directions.

Work ongoing on extending to heavy ions

ArXiv:1605.01389

Effective photon-photon luminosities as a function of $\gamma \gamma$ c.m. energy $(W_{\gamma \gamma})$ for five colliding systems at FCC and LHC energies: Pb–Pb at $\sqrt{s} = 39$, 5.5 TeV (at their corresponding nominal beam luminosities); pp at $\sqrt{s} = 100$, 14 TeV (corresponding to 1 fb⁻¹ integrated luminosities); and e^+e^- at $\sqrt{s} = 240$ GeV (FCC-ee nominal luminosity per IP). The vertical dashed lines indicate the energy thresholds for Higgs, W^+W^- , ZZ, and $t\bar{t}$ production.

$$\mathrm{d}\mathcal{L}_{\mathrm{eff}}/\mathrm{d}W_{\gamma\gamma} \equiv \mathcal{L}_{AB}\,\mathrm{d}\mathcal{L}_{\gamma\gamma}/\mathrm{d}W_{\gamma\gamma},\qquad 33$$

Cross sections

$$\begin{aligned} \sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)[m_{\tilde{\chi}_1^\pm} \simeq 200 \,\text{GeV}] \simeq 0.6 \,\text{fb}, \\ \sigma(W^+ W^-) = 108.5 \,\text{fb}, \end{aligned}$$

For $\mathcal{L}_{int} = 300 \, \text{fb}^{-1}$, the number of expected events are

 $N(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \simeq 180,$ $N(W^+ W^-) = 32550,$