# Monte Carlo generators for CR interactions

Sergey Ostapchenko
Frankfurt Institute for Advanced Studies

EDS Blois 2017

Prague, June 26-30, 2017

## Cosmic ray studies with Extensive Air Shower technique



### ground-based observations

- ullet primary CR energy  $\Longleftrightarrow$  charged particle density at ground
- CR composition  $\iff$  muon density  $\rho_{\mu}$  at ground

## Cosmic ray studies with Extensive Air Shower technique



### measurements of EAS fluorescence light

- primary CR energy ← integrated light
- CR composition  $\iff$  shower maximum position  $X_{\text{max}}$

## Cosmic ray studies with Extensive Air Shower technique



### CR composition studies - most dependent on interaction models

- e.g. predictions for  $X_{\max}$ : on the properties of the primary particle interaction ( $\sigma_{p-{\rm air}}^{\rm inel}$ , forward particle spectra)
  - ullet  $\Rightarrow$  most relevant to LHC studies of pp collisions
- predictions for muon density: on secondary particle interactions (cascade multiplication); mostly on  $N_{\pi-{\rm air}}^{\rm ch}$ 
  - ⇒ small potential influence of 'new physics'

## Cosmic ray interaction models

- **QGSJET-II-04** [SO, PRD83 (2011) 014018]
  - based on the Reggeon Field Theory (RFT) approach
  - nonlinear effects: Pomeron-Pomeron interactions

## Cosmic ray interaction models

- QGSJET-II-04 [SO, PRD83 (2011) 014018]
  - based on the Reggeon Field Theory (RFT) approach
  - nonlinear effects: Pomeron-Pomeron interactions
- EPOS-LHC [Pierog, Karpenko, Katzy, Yatsenko & Werner, PRC92 (2015) 034906]
  - also RFT-based but involves phenomenological solutions (e.g. parametrized saturation effects)
  - additional theoretical mechanisms (e.g. energy-momentum sharing at the amplitude level, hydrodynamics for final states)
  - ullet generally better description of existing data (e.g.  $p_t$ -spectra)

## Cosmic ray interaction models

- QGSJET-II-04 [SO, PRD83 (2011) 014018]
  - based on the Reggeon Field Theory (RFT) approach
  - nonlinear effects: Pomeron-Pomeron interactions
- EPOS-LHC [Pierog, Karpenko, Katzy, Yatsenko & Werner, PRC92 (2015) 034906]
  - also RFT-based but involves phenomenological solutions (e.g. parametrized saturation effects)
  - additional theoretical mechanisms (e.g. energy-momentum sharing at the amplitude level, hydrodynamics for final states)
  - ullet generally better description of existing data (e.g.  $p_t$ -spectra)
- 3 SIBYLL-2.3 [Riehn, Engel, Fedynitch, Gaisser & Stanev, arXiv:1510.00568]
  - similar to most of the generators used at the LHC (based on the 'minijet' approach)
  - includes multiple soft interactions ⇒ some similarity to RFT-based models



### Hadronic interactions: qualitative picture

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades⇒ particle production
- virtual cascades
   ⇒ elastic rescattering
   (just momentum transfer)



#### Universal interaction mechanism

- different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g.  $\sigma_{pp}^{tot}$ ): due to a larger phase space for cascades to develop

## Hadronic interactions: input from pQCD & problems

- pQCD: collinear factorization applies for inclusive spectra  $\frac{d^3\sigma_{pp\to h}}{dp^3} = \sum_{i,j,k} f_{i/p} \otimes \sigma_{ij\to k} \otimes f_{j/p} \otimes D_{h/k}$
- separates short- & long-distance dynamics
- pQCD predicts evolution of PDFs  $(f_{i/p})$  & FFs  $(D_{h/k})$
- $\Rightarrow$  allows to simulate perturbative (high  $p_t$ ) part of parton cascades (initial & final state emission)



## Hadronic interactions: input from pQCD & problems

- pQCD: collinear factorization applies for inclusive spectra  $\frac{d^3\sigma_{pp\to h}}{dp^3} = \sum_{i,j,k} f_{i/p} \otimes \sigma_{ij\to k} \otimes f_{j/p} \otimes D_{h/k}$
- separates short- & long-distance dynamics
- pQCD predicts evolution of PDFs  $(f_{i/p})$  & FFs  $(D_{h/k})$



⇒ allows to simulate

### What is beyond and why the models are so different?

- nonperturbative (low  $p_t$ ) parton evolution ('soft' rescatterings; very initial stage of 'semihard' cascades)
- multiple scattering aspect
- nonlinear effects (interactions between parton cascades)
- constituent parton Fock states & hadron 'remnants'

### Hadronic interactions: nonperturbative Fock states

- 1. (Implicitely) always same nonperturbative Fock state (typical for models used at colliders, also SIBYLL model)
  - multiple parton cascades originate from the same initial parton state
  - multiple scattering has small impact on forward spectra
    - new branches emerge at small x  $(G(x,q^2) \propto 1/x)$
  - ⇒ Feynman scaling & limiting fragm. for forward production
  - higher  $\sqrt{s} \Rightarrow$  more abundant central particle production
  - forward & central production decoupled from each other
    - (descreasing number of cascade branches for increasing x)



### Hadronic interactions: nonperturbative Fock states

### 2. $p = \sum$ of multi-parton Fock states [EPOS & QGSJET(-II)]

- many cascades develop in parallel (already at nonperturbative stage)
- higher  $\sqrt{s} \Rightarrow$  larger Fock states come into play:  $|qqq\rangle \rightarrow |qqq\bar{q}q\rangle$  $\rightarrow ... |qqq\bar{q}q...\bar{q}q\rangle$ 
  - ⇒ softer forward spectra (energy sharing between constituent partons)
- forward & central particle production - strongly correlated
  - e.g. more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra



## Why of importance for air shower predictions?



# 'Smoking gun' test: signal correlations in CMS & TOTEM

## Cross-correlation of $dN_{pp}^{ch}/d|\eta|$ at $\eta=0~(p_t>0.1~\text{GeV})$ and $\eta=6$



- strong correlation for QGSJET-II-04 & EPOS-LHC (apart from the tails of the multiplicity distributions)
- twice weaker correlation for SIBYLL-2.3



# 'Smoking gun' test: signal correlations in CMS & TOTEM





 strong correlation for QGSJET-II-04 & EPOS-LHC (apart from the tails of the multiplicity distributions)

Alternatively: discrimination by LHCf & ATLAS (see extra slides)

### All the models: updated with Run 1 data of LHC



### All the models: updated with Run 1 data of LHC





ullet NB:  $\sigma_{p-{\rm air}}^{{
m inel}}$  defines where the cascade starts

### All the models: updated with Run 1 data of LHC



## Model predictions for EAS, e.g. $X_{\text{max}}$ : yet large differences



# Model predictions for EAS, e.g. $X_{\text{max}}$ : yet large differences



# Deepest $X_{\max}$ of SIBYLL-2.3 – mainly due to the smallest $K_{p-\operatorname{air}}^{\operatorname{inel}}$

- direct consequence of the assumptions on parton Fock states
  - can be discriminated at LHC (central-forward correlations)

## Model predictions for EAS, e.g. $X_{\text{max}}$ : yet large differences



#### For other models: treatment of proton diffraction?

- $\sigma_{pp}^{\text{diffr}}$  impacts recalculation from pp to pA (AA)
  - $\bullet$   $\sigma_{p-{
    m air}}^{
    m inel}$  due to inelastic screening
  - directly related to  $\sigma_{p-{
    m air}}^{
    m diffr}$ , hence, also to  $K_{p-{
    m air}}^{
    m inel}$  due to small 'inelasticity' of diffractive collisions (especially for target SD)

# Impact of diffraction uncertainties on $X_{\text{max}}$ predictions [SO, PRD 89, 074009 (2014)]

# Presently: tension between CMS & TOTEM concerning $\sigma_{pp}^{\mathrm{SD}}$

|                                                             | TOTEM   | CMS           |
|-------------------------------------------------------------|---------|---------------|
| $M_X$ range, GeV                                            | 7 - 350 | 12 - 394      |
| $\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$ , mb                | ≃ 3.3   | $4.3 \pm 0.6$ |
| $\frac{d\sigma_{pp}^{\mathrm{SD}}}{dy_{\mathrm{gap}}}$ , mb | 0.42    | 0.62          |

ullet may be regarded as the characteristic uncertainty for  $\sigma^{SD}_{pp}$ 

# Impact of diffraction uncertainties on $X_{\text{max}}$ predictions [SO, PRD 89, 074009 (2014)]

# Presently: tension between CMS & TOTEM concerning $\sigma_{pp}^{\mathrm{SD}}$

|                                                  | TOTEM   | CMS           |
|--------------------------------------------------|---------|---------------|
| $M_X$ range, GeV                                 | 7 - 350 | 12 - 394      |
| $\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$ , mb     |         | $4.3 \pm 0.6$ |
| $\frac{d\sigma_{pp}^{\rm SD}}{dy_{ m gap}}$ , mb | 0.42    | 0.62          |

ullet  $\Rightarrow$  may be regarded as the characteristic uncertainty for  $\sigma_{pp}^{SD}$ 

### Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD)
  - to approach CMS results
    - ullet slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- ullet similar  $\sigma_{pp}^{ ext{tot/el}}$  & central particle production in both cases

## Impact of diffraction uncertainties on $X_{\text{max}}$ predictions



## Impact of diffraction uncertainties on $X_{\text{max}}$ predictions



# Impact of diffraction uncertainties on $X_{\text{max}}$ predictions

### Characteristic differences: $\Delta X_{\rm max} \simeq 10 \, {\rm g/cm}^2$



- option SD-:
  - smaller inelastic screening  $\Rightarrow$  larger  $\sigma_{n-{
    m air}}^{{
    m inel}}$
  - smaller diffraction for p-air  $\Rightarrow$  larger  $K_{p-{\rm air}}^{{\rm inel}}$
  - ullet  $\Rightarrow$  smaller  $X_{
    m max}$  (all effects in the same direction)
- option SD+: opposite effects

### Model differences for $X_{\text{max}}$ twice bigger (reach $20 \,\text{g/cm}^2$ )

- other interaction properties relevant?
- may be checked using the "cocktail" approach: using different models for certain interactions in air showers

### Other sources of model uncertainties for $X_{\text{max}}$

### Let us compare $X_{\rm max}$ of EPOS-LHC & QGSJET-II-04

- and construct 'mixture models'
- use QGSJET-II for  $\sigma_{p-\text{air}}^{\text{inel}}$  & leading nucleon spectrum (EPOS-LHC for the rest)
- $\Delta X_{\text{max}} \leq 5 \text{ g/cm}^2$  in agreement with above



### Other sources of model uncertainties for $X_{\text{max}}$

### Let us compare $X_{\text{max}}$ of EPOS-LHC & QGSJET-II-04

- QGSJET-II for  $\sigma_{p-\text{air}}^{\text{inel}}$  & leading nucleon spectrum
- $\Delta X_{\text{max}} \le 5 \text{ g/cm}^2$  in agreement with above
- now QGSJET-II for the complete 1st interaction (EPOS-LHC for the rest)
- $\Delta X_{\text{max}} \leq 5 \text{ g/cm}^2$
- reason: harder pion spectra in p – air in EPOS-LHC



### Other sources of model uncertainties for $X_{\text{max}}$

### Let us compare $X_{\text{max}}$ of EPOS-LHC & QGSJET-II-04

- QGSJET-II for  $\sigma_{p-\text{air}}^{\text{inel}}$  & leading nucleon spectrum
- $\Delta X_{\text{max}} \le 5 \text{ g/cm}^2$  in agreement with above
- now QGSJET-II for the complete 1st interaction
- $\Delta X_{\rm max} \leq 5 \text{ g/cm}^2$
- remaining difference: copious p̄p- & n̄n-pair production and higher diffraction for π-air collisions in EPOS-LHC



### PAO measurement of maximal muon production depth $X_{\max}^{\mu}$

- models predict deeper X<sup>µ</sup><sub>max</sub> than observed
  - e.g. one needs primary iron for QGSJET-II-04
  - or primary gold for EPOS-LHC...



[from M. Roth, "Composition-2015" talk]

### $X_{\rm max}^{\mu}$ : effects of inelastic & diffractive $\pi-{\rm air}$ cross sections

- NB: muons originate from a multi-step hadron cascade
- smaller  $\sigma_{\pi-air}^{inel}$   $\Rightarrow$  larger distances between the cascade steps
  - $\Rightarrow$  deeper  $X_{\max}^{\mu}$
- larger diffraction in  $\pi$  air  $\Rightarrow$  similar effect



### $X_{\rm max}^{\mu}$ : effects of inelastic & diffractive $\pi-{\rm air}$ cross sections

- NB: muons originate from a multi-step hadron cascade
- smaller  $\sigma_{\pi-air}^{inel} \Rightarrow$  larger distances between the cascade steps
  - $\Rightarrow$  deeper  $X_{\max}^{\mu}$
- larger diffraction in  $\pi$  air  $\Rightarrow$  similar effect



### $X_{\max}^{\mu}$ : relation to (anti-)baryon production

- no decay for  $p \& \bar{p} (n \& \bar{n})$  $\Rightarrow$  few more cascade steps
- but: impact on  $X_{\max}^{\mu}$  IFF  $N_{p,\bar{p},n,\bar{n}}$  comparable to  $N_{\pi}!$  (the case of EPOS)



### $X_{\max}^{\mu}$ : relation to (anti-)baryon production

- no decay for  $p \& \bar{p} (n \& \bar{n})$  $\Rightarrow$  few more cascade steps
- but: impact on  $X_{\max}^{\mu}$  IFF  $N_{p,\bar{p},n,\bar{n}}$  comparable to  $N_{\pi}!$  (the case of EPOS)



### Difference of $X_{\max}^{\mu}$ : EPOS-LHC / QGSJET-II-04, using "cocktail"

- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect:
   X<sup>\mu</sup><sub>max</sub> difference due to pion-air collisions



### Difference of $X_{\text{max}}^{\mu}$ : EPOS-LHC / QGSJET-II-04, using "cocktail"

- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect:
   X<sup>\mu</sup><sub>max</sub> difference due to pion-air collisions
- now QGSJET-II also for  $\bar{p}p$  &  $\bar{n}n$  production in  $\pi$ -air
  - largest effect



## Constraining pion interactions by cosmic ray data

### Difference of $X_{\text{max}}^{\mu}$ : EPOS-LHC / QGSJET-II-04, using "cocktail"

- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect:
   X<sup>\mu</sup><sub>max</sub> difference due to pion-air collisions
- largest effect: copious p̄p
   k̄n production in EPOS
- remaining difference:  $\pi^{\pm} \& K^{\pm}$  spectral shapes & diffraction in  $\pi$ - & K-air



### Constraining pion interactions by cosmic ray data

### Difference of $X_{\text{max}}^{\mu}$ : EPOS-LHC / QGSJET-II-04, using "cocktail"

- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect:
   X<sup>\mu</sup><sub>max</sub> difference due to pion-air collisions
- largest effect: copious  $\bar{p}p$ &  $\bar{n}n$  production in EPOS



### Model-dependence of $X_{\max}^{\mu}$ : same features of $\pi$ -air as for $X_{\max}$

- $X_{\text{max}}^{\mu}$  even more sensitive!
- ⇒ can be used to constrain model approaches
- e.g. copious  $\bar{p}p \& \bar{n}n$  production and large pion diffraction disfavored by Auger data

- NB:  $N_{\mu}$  results from a multi-step hadron cascade
  - $\sim 1$  cascade step per energy decade
- $N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$
- each order of magnitude: factor  $10^{\alpha_{\mu}} \simeq 8 \; (\alpha_{\mu} \simeq 0.9)$



- NB:  $N_{\mu}$  results from a multi-step hadron cascade
  - $ho \sim 1$  cascade step per energy decade
- $N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$
- each order of magnitude: factor  $10^{\alpha_{\mu}} \simeq 8 \; (\alpha_{\mu} \simeq 0.9)$
- $\Rightarrow$  higher  $N_{\mu}$  requires to change  $\pi$  air interactions over a wide energy range (see the talk of Jan Ebr)



- ullet NB:  $N_{\mu}$  results from a multi-step hadron cascade
  - ullet  $\sim 1$  cascade step per energy decade

• 
$$N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$$

- each order of magnitude: factor  $10^{\alpha_{\mu}} \simeq 8 \; (\alpha_{\mu} \simeq 0.9)$
- $\Rightarrow$  higher  $N_{\mu}$  requires to change  $\pi$  air interactions over a wide energy range (see the talk of Jan Ebr)



⇒ muon excess will emerge also at lower energies

⇒ muon excess will emerge also at lower energies



### Muon excess produced by 1-2 cascade steps between $10^{17}$ & $10^{19}$ ?

- $\bullet$  e.g. if we double  $N^{\text{ch}}$  for the 1st interaction?
  - < 10% increase for  $N_u$ ! [SO, talk at C2CR, Prague 2005]

### Muon excess produced by 1-2 cascade steps between $10^{17}$ & $10^{19}$ ?

- $\bullet$  e.g. if we double  $N^{ch}$  for the 1st interaction?
  - < 10% increase for  $N_{\mu}$ ! [SO, talk at C2CR, Prague 2005]

#### Perhaps 'new physics' does it?

- ullet proton-air cross section at UH energies:  $\sigma_{p-{
  m air}}^{
  m inel}\sim 1/2$  b
- to be detected by air shower techniques:
   new physics should impact the bulk of interactions

### Muon excess produced by 1-2 cascade steps between $10^{17}$ & $10^{19}$ ?

- e.g. if we double  $N^{ch}$  for the 1st interaction?
  - < 10% increase for  $N_{\mu}$ ! [SO, talk at C2CR, Prague 2005]

#### Perhaps 'new physics' does it?

- $\bullet$  proton-air cross section at UH energies:  $\sigma_{p-air}^{inel} \sim 1/2$  b
- to be detected by air shower techniques:
   new physics should impact the bulk of interactions
- ⇒ to emerge with barn-level cross section
  - presently at LHC: nothing at fb level

#### NB: signals of new physics may be discriminated by PAO

*p*-air: interaction profile & distribution of the impact parameter *b*:





- ullet  $\Rightarrow$  interactions dominated by peripheral (large b) collisions
- at large b: low parton density
  - → not suitable for new physics to emerge

### NB: signals of new physics may be discriminated by PAO

*p*-air: interaction profile & distribution of the impact parameter *b*:





#### Assume new physics to emerge in 10% of most central collisions

- and result in EAS with a factor of 10 higher muon density...
  - $\Rightarrow$  90% muon excess  $\left(\langle \rho_{\mu} \rangle = 0.1*10 \rho_{\mu}^{(0)} + 0.9* \rho_{\mu}^{(0)} = 1.9 \rho_{\mu}^{(0)} \right)$
- $\Rightarrow$  large fluctuations of muon density:  $\sigma_{\rho_{\mu}}/\rho_{\mu} \simeq 100\%$
- $\Rightarrow$  can be easily discriminated in PAO data (for usual EAS:  $\sigma_{\rho_u}/\rho_{\mu} \simeq 10 \div 15\%$ )



### Summary

- LHC studies of pp collisions constrained interaction models
  - ullet most important for CR physics:  $\sigma_{pp}^{
    m tot/el}$  by TOTEM & ATLAS
  - of importance: to resolve the diffraction issue
- ② Differences for predicted  $K_{p-{\rm air}}^{{\rm inel}}$  ( $\Rightarrow X_{{\rm max}}$ ): model assumptions for constituent parton Fock states
  - can be discriminated by combined measurements with central & forward-looking detectors at the LHC
- Present uncertainties for EAS predictions: largely due to the treatment of pion-air interactions
  - ullet can be constrained by  $X_{\max}^{\mu}$  measurements in CR experiments
- Present PAO data on  $X_{\max}^{\mu}$ : disfavor model features which lead to deep  $X_{\max}$
- **o** PAO muon excess implies a higher  $N_{\mu}$  at lower energies
  - more exotic options may be discriminated by studying fluctuations of muon density at ground

### Extra slides

## Tests at LHC: correlations of central & forward production



## Tests at LHC: correlations of central & forward production

Alternatively, forward  $\pi^0$  spectra in LHCf for different ATLAS triggers ( $\geq 1$ , 6, 20 charged hadrons of  $p_t > 0.5$  GeV &  $|\eta| < 2.5$ )



### Compare QGSJET-II-04 (left) to SIBYLL 2.3 (right)

- enhanced multiple scattering
   ⇒ softer pion spectra
- ⇒ violation of limiting fragmentation (energy sharing between constituent partons)
- nearly same spectral shape for all the triggers
- ⇒ perfect limiting fragmentation (central production decoupled)

## Tests at LHC: correlations of central & forward production

### Neutron spectra in LHCf (8.99 $< \eta < 9.22)$ for same triggers



- remarkably universal spectral shape in SIBYLL-2.3 (decoupling of central production)
  - closely related to the small 'inelasticity' of the model
- strong suppression of forward neutrons in QGSJET-II-04
  - higher central activity ⇒ more constituent partons involved
     ⇒ less energy left for the proton 'remnant'

# $\sigma_{ m inel}$ & forward hadron spectra for pion-nytrogen collisions

