

Towards Precision Measurement of

Elastic Scattering at U=70

26-30. čerbna 2017 Praha

A. A. Logunov Institute for High Energy Physics ARC "Kurchatov Institute", Protvino, RF

What is U-70?

Main discoveries:

- ullet First observation of the strong-interaction cross-section growth with energy in K^+p
- Scaling in hadronic inclusive spectra

IN OPERATION SINCE 1967

Motivation (one of several)

Setup

Lab. energy: 50 GeV.

Expected statistics: 10 9 events.

High (several percent) resolution in the momentum transfer

S1-S4 – SCINTILLATION COUNTERS; SA – ANTICOINCIDENCE COUNTER,
PC1-PC3 – PROPORTIONAL CHAMBERS; D1, D2 – DIFFERENTIAL CHERENKOV COUNTERS;
DT1-DT5 – DRIFT TUBES STATIONS; T – HYDROGEN TARGET; TOF – SCINTILLATION
COUNTERS FOR MEASURING THE RECOIL PROTON TOF; M – SPECTROMETRIC MAGNET.

Maylar drift tube

Drift chamber

 S_1 - S_3 – beam counters, T_1 - T_4 – photomultipliers of scintillation counters

Time resolution of one and two 2-m counters featuring HR2020 photomultiplier tubes versus the locus of particle propagation.

- t ∈ [a, b]

t-resolution, $\sigma(a, b)$ N, number of events/one run(20 days)

a, (GeV/c) ²	b, (GeV/c) ²	σ (a, b), mb	N
0.001	0.01	0.96	1.83·10 ⁸
0.01	0.1	4.03	7.66·10 ⁸
0. 1	1.0	2.62	4.98·10 ⁸
1.0	2.0	9.89.10-4	1.88·10 ⁵
2.0	3.0	8.79·10 ⁻⁵	1.67·10 ⁴
3.0	4.0	9.75·10 ⁻⁶	1852
4.0	5.0	9.89·10 ⁻⁷	188
5.0	6.0	1.28·10 ⁻⁷	25

Effective length = 1.5 m; $p_{\text{Hydr}} = 20 \text{ atm}$ (with account of the event registration efficiency)

 $\sigma(t)/t$ (from the scattering angle, resolution 0.3 mrad)

(from the recoil proton TOF, resolution 100 ps)

-t, (GeV/c)²

Possible development

- 1. Elastic *pp*-scattering in the region of diffraction peak at various energies
- 2. πp and Kp scattering
- 3. Precision measurements in the region of Coulombnuclear interference
- 4. Elastic scattering at large transferred momenta
- 5. Elastic scattering of protons and nuclei off nuclei with use of gaseous low-pressure targets
- 6. Diffraction dissociation

Coulomb Muclear Interference

Aim: extraction of a maximally possible information on the strong-interaction phase.

$$rac{d\sigma^{obs}}{dt} = rac{d\sigma^{Coulomb}}{dt} + rac{d\sigma^{N}}{dt} + 2\cos\Psi \cdot \sqrt{rac{d\sigma^{Coulomb}}{dt}} \cdot rac{d\sigma^{N}}{dt}$$

$$\Psi(s,t) = \Phi^{N}(s,t) + \frac{\alpha_{em}}{4\pi} \Delta \Phi^{CN}$$

Why?

$$\langle b^2 \rangle_{tot} = 2B(s,0) + ctg \Phi^N(s,0) \frac{\partial \Phi^N(s,0)}{\partial t}$$

$$\langle b^2 \rangle_{el} = 4 \langle (-t) B(s,t) \rangle + 4 \langle (-t) \left[\frac{\partial \Phi^N(s,t)}{\partial t} \right]^2 \rangle$$

$$\langle \Delta x_{||}^* \rangle_{el} = \sqrt{s - 4m^2} \; \langle \frac{\partial \Phi^N(s,t)}{\partial t} \rangle$$

Coulomb Muclear Interference

 The only change in the facility: the change of target and the system of TOF counters.

Target: a 2m long vessel of D = 1m with thin windows on the path of the beam filled with H_2

(at p = 1 atm.)

TOF counters to be installed inside the target

at ~ 40 cm from its axis. The pressure of hydrogen in the target is defined by give-and —take between statistics and the lowest value of |t|.

Basic attractive features of the proposal

- 1. High beam intensity (10⁷ p/cycle)
- 2. 4π geometry
- 3. High angular resolution both for beam and scattered particles (~0.1 mrad)
- 4. High TOF resolution (50 ps for beam protons, 100 ps for recoil protons)
- Recoil proton velocity from TOF, energy from ionization energy loss
- Recoil proton coordinates resolution 1cm from the time difference of signal arriving from photomultipliers
- 7. High granularity (100/2 π) in angle ϕ of the recoil proton
- 8. Scattered proton energy resolution ~1%.

Present Status of the Project

- All the necessary methodic work and all detector investigation, and also full MC simulation with use of GEANT4 are completed.
- There are the system of the proton abortion with help of the bent crystal, beam channel and spectroscopic magnet.
- Drift tubes and relevant electronics are being produced.
- There is scintillator for all counters, but only a half of photomultipliers (HAMAMTSU).
- A half of the necessary amount of electronics (CAEN) for amplitude ant time analysis of signals from photomultipliers are purchased.
- Production of the HV system for PMTs is in progress.

We need a 1.5 year and some 200 k\$ for completion of the facilituy.

For the studies in the CN region we have got practically everything and physical run can start in a year.

14